1,603,431 research outputs found
Characterization of high-current pulsed arcs ranging from 100--250 kA peak
In this paper, we present the laboratory study on three experimental setups
that produce a free arc channel subjected to the transient phase of a lightning
current waveform. This work extends the high-current pulsed arc
characterization performed in previous studies for peak levels up to 100 kA.
Eleven high-current waveforms with peak value ranging from 100--250 kA with
different growth rates and action integrals are studied, allowing the
comparison of different test benches. These waveforms correspond to standard
lightning ones used in aircraft certification processes. Hydrodynamic
properties such as arc channel evolution and shock-wave propagation are
determined by high-speed video imaging and the background-oriented Schlieren
method. The arc diameter reaches around 90mm at 50 s for a current of 250
kA peak. Space- and time-resolved measurements of temperature, electron density
and pressure are assessed by optical emission spectroscopy associated with the
radiative transfer equation. It is solved across the arc column and takes into
account the assumption of non-optically thin plasma at local thermodynamic
equilibrium. For a 250 kA waveform, temperatures up to 43000K are found, with
pressures in the order of 50 bar. The influence of current waveform parameters
on the arc properties are analyzed and discussed
Age of the Rotoehu Ash. Comment.
Suggests that the article by Whitehead & Ditchburn (1994), although presenting useful new data on 230Th/232Th analyses, is flawed and misleading in suggesting that the Rotoiti Tephra is considerably younger than c. 50 ka
Development of a 1 kA, 50 Hz Superconducting Converter
A single-phase, thermally switched superconducting power converter operating at mains frequency is being developed and tested by the authors. Typical design values of the device are: input voltage of 220 V; input current of 7 A; output voltage of 1 V; and output current of 1 kA. The average output power is about 750 VA, with an efficiency better than 96%. Test results of the full scale power converter while ramping up and down a superconducting magnet and a comparison with the theory are presented. The power converter will be installed as a part of a power supply system controlling the current of a separator magnet located in Ukraine for an iron ore recycling process
A transportable 50 kA dual mode lightning simulator
A transportable lightning simulator was designed, built and tested, which is capable of delivering more than 50 kA to an 8 micro-H test object. The simulator was designed to be a versatile device in the lightning laboratory while meeting the requirements of MIL-STD-1757A for component E current waveforms. The system is capable of operating in either a ringing mode with a Q greater than 5 and a nominal frequency of 160 kHz, or a unipolar mode with no hardware configuration changes. The ringing mode is obtained by the LCR series circuit formed by the pulse generator and test object. The unipolar mode is obtained by closing an electrically triggered crowbar switch at peak current. The simulator exceeds the peak current requirement and rate of rise requirements for MIL-STD-1757A in both the ringing and unipolar modes. The pulse half width in the unipolar mode is in excess of 50 microsec and the action is in excess of 10(exp 5) A(exp 2)s. The design, component values, and test results are presented
Timing and causes of North African wet phases during the last glacial period and implications for modern human migration
We present the first speleothem-derived central North Africa rainfall record for the last glacial period. The record reveals three main wet periods at 65-61 ka, 52.5-50.5 ka and 37.5-33 ka that lead obliquity maxima and precession minima. We find additional minor wet episodes that are synchronous with Greenland interstadials. Our results demonstrate that sub-tropical hydrology is forced by both orbital cyclicity and North Atlantic moisture sources. The record shows that after the end of a Saharan wet phase around 70 ka ago, North Africa continued to intermittently receive substantially more rainfall than today, resulting in favourable environmental conditions for modern human expansion. The encounter and subsequent mixture of Neanderthals and modern humans – which, on genetic evidence, is considered to have occurred between 60 and 50 ka – occurred synchronously with the wet phase between 52.5 and 50.5 ka. Based on genetic evidence the dispersal of modern humans into Eurasia started less than 55 ka ago. This may have been initiated by dry conditions that prevailed in North Africa after 50.5 ka. The timing of a migration reversal of modern humans from Eurasia into North Africa is suggested to be coincident with the wet period between 37.5 and 33 ka
Structure and Magnetism of Mn5Ge3 Nanoparticles
In this work, we investigated the magnetic and structural properties of isolated Mn5Ge3 nanoparticles prepared by the cluster-beam deposition technique. Particles with sizes between 7.2 and 12.6 nm were produced by varying the argon pressure and power in the cluster gun. X-ray diffraction (XRD)and selected area diffraction (SAD) measurements show that the nanoparticles crystallize in the hexagonal Mn5Si3-type crystal structure, which is also the structure of bulk Mn5Ge3. The temperature dependence of the magnetization shows that the as-made particles are ferromagnetic at room temperature and have slightly different Curie temperatures. Hysteresis-loop measurements show that the saturation magnetization of the nanoparticles increases significantly with particle size, varying from 31 kA/m to 172 kA/m when the particle size increases from 7.2 to 12.6 nm. The magnetocrystalline anisotropy constant K at 50 K, determined by fitting the high-field magnetization data to the law of approach to saturation, also increases with particle size, from 0.4 × 105 J/m3 to 2.9 × 105 J/m3 for the respective sizes. This trend is mirrored by the coercivity at 50 K, which increases from 0.04 T to 0.13 T. A possible explanation for the magnetization trend is a radial Ge concentration gradient
Lightning current tests on radars and similar structures
A lightning stroke presents a real challenge due to its potential to cause irreversible damage on electronics. Future systems are packaged in composite shielding materials, which give little or no protection with respect to the electromagnetic fields caused by a nearby strike. A direct lightning stroke is even a higher threat for densely packed electronics in composite housings. Our objective is to determine an appropriate level of protection for a direct stroke. From the military standard MIL-STD-464A - Severe Strike, peak currents of the discharge between 50 and 200 kA, for the A pulse, 2 kA for the B pulse and 200 to 800 Amps for the C pulse are re-created in a closed environment. Experiments have been carried out using a test setup that could duplicate these three discharge components on structures representative for radar housing
- …
