387 research outputs found
MAIT cells come to the rescue in cancer immunotherapy?
Recent progress in immunobiology has led to the observation that, among cells classically categorized as the typical representatives of the adaptive immune system, i.e., T cells, some possess the phenotype of innate cells. Invariant T cells are characterized by T cell receptors recognizing a limited range of non-peptide antigens, presented only in the context of particular molecules. Mucosal-associated invariant T cells (MAIT cells) are an example of such unconventional cells. In humans, they constitute between 1% and 8% of the peripheral blood T lymphocytes and are further enriched in mucosal tissues, mesenteric lymph nodes, and liver, where they can account for even 40% of all the T cells. MAIT cells recognize antigens in the context of major histocompatibility complex class I-related protein (MR1). Upon activation, they instantly release pro-inflammatory cytokines and mediate cytolytic function towards bacterially infected cells. As such, they have been a rapidly evolving research topic not only in the field of infectious diseases but also in the context of many chronic inflammatory diseases and, more recently, in immuno-oncology. Novel findings suggest that MAIT cells function could also be modulated by endogenous ligands and drugs, making them an attractive target for therapeutic approaches. In this review, we summarize the current understanding of MAIT cell biology, their role in health and disease and discuss their future potential in cancer immunotherapy. This is discussed through the prism of knowledge and experiences with invariant natural killer T cells (iNKT)—another prominent unconventional T cell subset that shares many features with MAIT cells
Recommended from our members
Dynamic MAIT cell response with progressively enhanced innateness during acute HIV-1 infection.
Mucosa-associated invariant T (MAIT) cell loss in chronic HIV-1 infection is a significant insult to antimicrobial immune defenses. Here we investigate the response of MAIT cells during acute HIV-1 infection utilizing the RV217 cohort with paired longitudinal pre- and post-infection samples. MAIT cells are activated and expand in blood and mucosa coincident with peak HIV-1 viremia, in a manner associated with emerging microbial translocation. This is followed by a phase with elevated function as viral replication is controlled to a set-point level, and later by their functional decline at the onset of chronic infection. Interestingly, enhanced innate-like pathways and characteristics develop progressively in MAIT cells during infection, in parallel with TCR repertoire alterations. These findings delineate the dynamic MAIT cell response to acute HIV-1 infection, and show how the MAIT compartment initially responds and expands with enhanced function, followed by progressive reprogramming away from TCR-dependent antibacterial responses towards innate-like functionality
Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells
The major-histocompatibility-complex-(MHC)-class-I-related molecule MR1 can present activating and non-activating vitamin-B-based ligands to mucosal-associated invariant T cells (MAIT cells). Whether MR1 binds other ligands is unknown. Here we identified a range of small organic molecules, drugs, drug metabolites and drug-like molecules, including salicylates and diclofenac, as MR1-binding ligands. Some of these ligands inhibited MAIT cells ex vivo and in vivo, while others, including diclofenac metabolites, were agonists. Crystal structures of a T cell antigen receptor (TCR) from a MAIT cell in complex with MR1 bound to the non-stimulatory and stimulatory compounds showed distinct ligand orientations and contacts within MR1, which highlighted the versatility of the MR1 binding pocket. The findings demonstrated that MR1 was able to capture chemically diverse structures, spanning mono- and bicyclic compounds, that either inhibited or activated MAIT cells. This indicated that drugs and drug-like molecules can modulate MAIT cell function in mammals
Stabilizing short-lived Schiff base derivatives of 5-aminouracils that activate mucosal-associated invariant T cells
Mucosal-associated invariant T (MAIT) cells are activated by unstable antigens formed by reactions of 5-amino-6-D-ribitylaminouracil (a vitamin B2 biosynthetic intermediate) with glycolysis metabolites such as methylglyoxal. Here we show superior preparations of antigens in dimethylsulfoxide, avoiding their rapid decomposition in water (t1/2 1.5 h, 37 °C). Antigen solution structures, MAIT cell activation potencies (EC50 3–500 pM), and chemical stabilities are described. Computer analyses of antigen structures reveal stereochemical and energetic influences on MAIT cell activation, enabling design of a water stable synthetic antigen (EC50 2 nM). Like native antigens, this antigen preparation induces MR1 refolding and upregulates surface expression of human MR1, forms MR1 tetramers that detect MAIT cells in human PBMCs, and stimulates cytokine expression (IFNγ, TNF) by human MAIT cells. These antigens also induce MAIT cell accumulation in mouse lungs after administration with a co-stimulant. These chemical and immunological findings provide new insights into antigen properties and MAIT cell activation
Alcohol Abstinence Does Not Fully Reverse Abnormalities of Mucosal-Associated Invariant T Cells in the Blood of Patients With Alcoholic Hepatitis
OBJECTIVES:
Alcoholic hepatitis (AH) develops in approximately 30% of chronic heavy drinkers. The immune system of patients with AH is hyperactivated, yet ineffective against infectious diseases. Mucosal-associated invariant T (MAIT) cells are innate-like lymphocytes that are highly enriched in liver, mucosa, and peripheral blood and contribute to antimicrobial immunity. We aimed to determine whether MAIT cells were dysregulated in heavy drinkers with and without AH and the effects of alcohol abstinence on MAIT cell recovery.
METHODS:
MR1 tetramers loaded with a potent MAIT cell ligand 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil were used in multiparameter flow cytometry to analyze peripheral blood MAIT cells in 59 healthy controls (HC), 56 patients with AH, and 45 heavy drinkers without overt liver disease (HDC) at baseline and 6- and 12-month follow-ups. Multiplex immunoassays were used to quantify plasma levels of cytokines related to MAIT cell activation. Kinetic Turbidimetric Limulus Amebocyte Lysate Assay and ELISA were performed to measure circulating levels of 2 surrogate markers for bacterial translocation (lipopolysaccharide and CD14), respectively.
RESULTS:
At baseline, patients with AH had a significantly lower frequency of MAIT cells than HDC and HC. HDC also had less MAIT cells than HC (median 0.16% in AH, 0.56% in HDC, and 1.25% in HC). Further, the residual MAIT cells in patients with AH expressed higher levels of activation markers (CD69, CD38, and human leukocyte antigen [HLA]-DR), the effector molecule granzyme B, and the immune exhaustion molecule PD-1. Plasma levels of lipopolysaccharide and CD14 and several cytokines related to MAIT cell activation were elevated in patients with AH (interferon [IFN]-α, interleukin [IL]-7, IL-15, IL-17, IL-18, IL-23, IFN-γ, and tumor necrosis factor α). Decreased MAIT cell frequency and upregulated CD38, CD69, and HLA-DR correlated negatively and positively, respectively, with aspartate aminotransferase level. MAIT cell frequency negatively correlated with IL-18. HLA-DR and CD38 levels correlated with several cytokines. At follow-ups, abstinent patients with AH had increased MAIT cell frequency and decreased MAIT cell activation. However, MAIT cell frequency was not fully normalized in patients with AH (median 0.31%).
DISCUSSION:
We showed that HDC had a reduction of blood MAIT cells despite showing little evidence of immune activation, whereas patients with AH had a severe depletion of blood MAIT cells and the residual cells were highly activated. Alcohol abstinence partially reversed those abnormalities
Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers
Studies on the biology of mucosal-associated invariant T cells (MAIT cells) in mice have been hampered by a lack of specific reagents. Using MR1-antigen (Ag) tetramers that specifically bind to the MR1-restricted MAIT T cell receptors (TCRs), we demonstrate that MAIT cells are detectable in a broad range of tissues in C57BL/6 and BALB/c mice. These cells include CD4(-)CD8(-), CD4(-)CD8(+), and CD4(+)CD8(-) subsets, and their frequency varies in a tissue- and strain-specific manner. Mouse MAIT cells have a CD44(hi)CD62L(lo) memory phenotype and produce high levels of IL-17A, whereas other cytokines, including IFN-gamma, IL-4, IL-10, IL-13, and GM-CSF, are produced at low to moderate levels. Consistent with high IL-17A production, most MAIT cells express high levels of retinoic acid-related orphan receptor gamma t (ROR gamma t), whereas ROR gamma t(lo) MAIT cells predominantly express T-bet and produce IFN-gamma. Most MAIT cells express the promyelocytic leukemia zinc finger (PLZF) transcription factor, and their development is largely PLZF dependent. These observations contrast with previous reports that MAIT cells from V alpha 19 TCR transgenic mice are PLZF(-) and express a naive CD44(lo) phenotype. Accordingly, MAIT cells from normal mice more closely resemble human MAIT cells than previously appreciated, and this provides the foundation for further investigations of these cells in health and disease
Cytotoxic and regulatory roles of mucosal-associated invariant T cells in type 1 diabetes
Type 1 diabetes (T1D) is an autoimmune disease that results from the destruction of pancreatic β-cells by the immune system that involves innate and adaptive immune cells. Mucosal-associated invariant T cells (MAIT cells) are innate-like T-cells that recognize derivatives of precursors of bacterial riboflavin presented by the major histocompatibility complex (MHC) class I–related molecule MR1. Since T1D is associated with modification of the gut microbiota, we investigated MAIT cells in this pathology. In patients with T1D and mice of the non-obese diabetic (NOD) strain, we detected alterations in MAIT cells, including increased production of granzyme B, which occurred before the onset of diabetes. Analysis of NOD mice that were deficient in MR1, and therefore lacked MAIT cells, revealed a loss of gut integrity and increased anti-islet responses associated with exacerbated diabetes. Together our data highlight the role of MAIT cells in the maintenance of gut integrity and the control of anti-islet autoimmune responses. Monitoring of MAIT cells might represent a new biomarker of T1D, while manipulation of these cells might open new therapeutic strategies
MAIT cells launch a rapid, robust and distinct hyperinflammatory response to bacterial superantigens and quickly acquire an anergic phenotype that impedes their cognate antimicrobial function: Defining a novel mechanism of superantigen-induced immunopathology and immunosuppression
Superantigens (SAgs) are potent exotoxins secreted by Staphylococcus aureus and Streptococcus pyogenes. They target a large fraction of T cell pools to set in motion a "cytokine storm" with severe and sometimes life-threatening consequences typically encountered in toxic shock syndrome (TSS). Given the rapidity with which TSS develops, designing timely and truly targeted therapies for this syndrome requires identification of key mediators of the cytokine storm's initial wave. Equally important, early host responses to SAgs can be accompanied or followed by a state of immunosuppression, which in turn jeopardizes the host's ability to combat and clear infections. Unlike in mouse models, the mechanisms underlying SAg-associated immunosuppression in humans are ill-defined. In this work, we have identified a population of innate-like T cells, called mucosa-associated invariant T (MAIT) cells, as the most powerful source of pro-inflammatory cytokines after exposure to SAgs. We have utilized primary human peripheral blood and hepatic mononuclear cells, mouse MAIT hybridoma lines, HLA-DR4-transgenic mice, MAIThighHLA-DR4+ bone marrow chimeras, and humanized NOD-scid IL-2Rγnull mice to demonstrate for the first time that: i) mouse and human MAIT cells are hyperresponsive to SAgs, typified by staphylococcal enterotoxin B (SEB); ii) the human MAIT cell response to SEB is rapid and far greater in magnitude than that launched by unfractionated conventional T, invariant natural killer T (iNKT) or γδ T cells, and is characterized by production of interferon (IFN)-γ, tumor necrosis factor (TNF)-α and interleukin (IL)-2, but not IL-17A; iii) high-affinity MHC class II interaction with SAgs, but not MHC-related protein 1 (MR1) participation, is required for MAIT cell activation; iv) MAIT cell responses to SEB can occur in a T cell receptor (TCR) Vβ-specific manner but are largely contributed by IL-12 and IL-18; v) as MAIT cells are primed by SAgs, they also begin to develop a molecular signature consistent with exhaustion and failure to participate in antimicrobial defense. Accordingly, they upregulate lymphocyte-activation gene 3 (LAG-3), T cell immunoglobulin and mucin-3 (TIM-3), and/or programmed cell death-1 (PD-1), and acquire an anergic phenotype that interferes with their cognate function against Klebsiella pneumoniae and Escherichia coli; vi) MAIT cell hyperactivation and anergy co-utilize a signaling pathway that is governed by p38 and MEK1/2. Collectively, our findings demonstrate a pathogenic, rather than protective, role for MAIT cells during infection. Furthermore, we propose a novel mechanism of SAg-associated immunosuppression in humans. MAIT cells may therefore provide an attractive therapeutic target for the management of both early and late phases of severe SAg-mediated illnesses
Human mucosal-associated invariant T cells contribute to antiviral influenza immunity via IL-18–dependent activation
Mucosal-associated invariant T (MAIT) cells are innate-like T lymphocytes known to elicit potent immunity to a broad range of bacteria, mainly via the rapid production of inflammatory cytokines. Whether MAIT cells contribute to antiviral immunity is less clear. Here we asked whether MAIT cells produce cytokines/chemokines during severe human influenza virus infection. Our analysis in patients hospitalized with avian H7N9 influenza pneumonia showed that individuals who recovered had higher numbers of CD161+Vα7.2+ MAIT cells in peripheral blood compared with those who succumbed, suggesting a possible protective role for this lymphocyte population. To understand the mechanism underlying MAIT cell activation during influenza, we cocultured influenza A virus (IAV)-infected human lung epithelial cells (A549) and human peripheral blood mononuclear cells in vitro, then assayed them by intracellular cytokine staining. Comparison of influenza-induced MAIT cell activation with the profile for natural killer cells (CD56+CD3−) showed robust up-regulation of IFNγ for both cell populations and granzyme B in MAIT cells, although the individual responses varied among healthy donors. However, in contrast to the requirement for cell-associated factors to promote NK cell activation, the induction of MAIT cell cytokine production was dependent on IL-18 (but not IL-12) production by IAV-exposed CD14+ monocytes. Overall, this evidence for IAV activation via an indirect, IL-18–dependent mechanism indicates that MAIT cells are protective in influenza, and also possibly in any human disease process in which inflammation and IL-18 production occur
- …
