555,091 research outputs found

    Hierarchical multiscale modeling of polymer-solid interfaces: atomistic to coarse-grained description, and structural and conformational properties of polystyrene-gold systems

    Get PDF
    A hierarchical simulation approach was developed in order to study polystyrene films sandwiched between two parallel Au(111) surfaces. The coarse-grained potentials describing the interaction of polystyrene with the gold surface were developed systematically using constrained all-atom molecular simulations of a styrene trimer on the Au(111) surface. The model was validated by studying a 5 nm film of short (10mer) polystyrene chains using all-atom and coarse-grained molecular dynamics simulations. The density, structure and conformational properties of coarse-grained films were found to be in excellent agreement with all-atom ones. The coarse-grained model was then used to study the structural and conformational properties of roughly 10 nm and 20 nm thick films with 10, 50, 100 and 200mer chains. The width of the interphase region of the polymer films is property specific. The density profiles reached the bulk value around 1.5 nm from the interface, for all chain lengths. An estimate of the width of the interphase region based on the conformation tensor profile indicates that the interphase width is proportional to the square root of the chain length (number of monomers) and for 200mer chains the interphase width is approximately 6-9 nm

    Energy transfer from retinal to amino acids — a time-resolved study of the ultraviolet emission of bacteriorhodopsin

    Get PDF
    Two-step excitation of retinal in bacteriorhodopsin by visible light is followed by an energy transfer to amino acids that is seen as fluorescent emission around 350 nm. The fluorescence spectrum obtained after two-step excitation (2 × 527 nm) differs from the fluorescence spectrum obtained after one-step ultraviolet excitation (263.5 nm) by a strongly quenched emission with a fluorescence lifetime of 10 ± 5 ps and a smaller spectral width. The two-step absorption process presumably selects tryptophan residues which strongly couple to the retinal chromophore

    Enhanced spin-orbit scattering length in narrow Al_xGa_{1-x}N/GaN wires

    Get PDF
    The magnetotransport in a set of identical parallel AlGaN/GaN quantum wire structures was investigated. The width of the wires was ranging between 1110 nm and 340 nm. For all sets of wires clear Shubnikov--de Haas oscillations are observed. We find that the electron concentration and mobility is approximately the same for all wires, confirming that the electron gas in the AlGaN/GaN heterostructure is not deteriorated by the fabrication procedure of the wire structures. For the wider quantum wires the weak antilocalization effect is clearly observed, indicating the presence of spin-orbit coupling. For narrow quantum wires with an effective electrical width below 250 nm the weak antilocalization effect is suppressed. By comparing the experimental data to a theoretical model for quasi one-dimensional structures we come to the conclusion that the spin-orbit scattering length is enhanced in narrow wires.Comment: 6 pages, 5 figure

    Channel-Width Dependent Enhancement in Nanoscale Field Effect Transistor

    Full text link
    We report the observation of channel-width dependent enhancement in nanoscale field effect transistors containing lithographically-patterned silicon nanowires as the conduction channel. These devices behave as conventional metal-oxide-semiconductor field-effect transistors in reverse source drain bias. Reduction of nanowire width below 200 nm leads to dramatic change in the threshold voltage. Due to increased surface-to-volume ratio, these devices show higher transconductance per unit width at smaller width. Our devices with nanoscale channel width demonstrate extreme sensitivity to surface field profile, and therefore can be used as logic elements in computation and as ultrasensitive sensors of surface-charge in chemical and biological species.Comment: 5 pages, 4 figures, two-column format. Related papers can be found at http://nano.bu.ed

    Intersubband electronic Raman scattering in narrow GaAs single quantum wells dominated by single-particle excitations

    Full text link
    We measured resonant Raman scattering by intersubband electronic excitations in GaAs/AlAs single quantum wells (QWs) with well widths ranging from 8.5 to 18 nm. In narrow (less than 10 nm) QWs with sufficiently high electron concentrations, only single-particle excitations (SPEs) were observed in intersubband Raman scattering, which was confirmed by the well-width dependence of Raman spectra. We found characteristic variations in Raman shift and line shape for SPEs with incident photon energy in the narrow QWs.Comment: 5 pages including 4 figure

    Engineering magnetic domain-wall structure in permalloy nanowires

    Get PDF
    Using Lorentz transmission electron microscopy we investigate the behavior of domain walls pinned at non-topographic defects in Cr(3 nm)/Permalloy(10 nm)/Cr(5 nm) nanowires of width 500 nm. The pinning sites consist of linear defects where magnetic properties are modified by a Ga ion probe with diameter ~ 10 nm using a focused ion beam microscope. We study the detailed change of the modified region (which is on the scale of the focused ion spot) using electron energy loss spectroscopy and differential phase contrast imaging on an aberration (Cs) corrected scanning transmission electron microscope. The signal variation observed indicates that the region modified by the irradiation corresponds to ~ 40-50 nm despite the ion probe size of only 10 nm. Employing the Fresnel mode of Lorentz transmission electron microscopy, we show that it is possible to control the domain wall structure and its depinning strength not only via the irradiation dose but also the line orientation.Comment: Accepted for publication in Physical Review Applie

    Room-temperature ballistic transport in narrow graphene strips

    Full text link
    We investigate electron-phonon couplings, scattering rates, and mean free paths in zigzag-edge graphene strips with widths of the order of 10 nm. Our calculations for these graphene nanostrips show both the expected similarity with single-wall carbon nanotubes (SWNTs) and the suppression of the electron-phonon scattering due to a Dirichlet boundary condition that prohibits one major backscattering channel present in SWNTs. Low-energy acoustic phonon scattering is exponentially small at room temperature due to the large phonon wave vector required for backscattering. We find within our model that the electron-phonon mean free path is proportional to the width of the nanostrip and is approximately 70 μ\mum for an 11-nm-wide nanostrip.Comment: 5 pages and 5 figure

    Quantum Spin Hall Insulator State in HgTe Quantum Wells

    Full text link
    Recent theory predicted that the Quantum Spin Hall Effect, a fundamentally novel quantum state of matter that exists at zero external magnetic field, may be realized in HgTe/(Hg,Cd)Te quantum wells. We have fabricated such sample structures with low density and high mobility in which we can tune, through an external gate voltage, the carrier conduction from n-type to the p-type, passing through an insulating regime. For thin quantum wells with well width d < 6.3 nm, the insulating regime shows the conventional behavior of vanishingly small conductance at low temperature. However, for thicker quantum wells (d > 6.3 nm), the nominally insulating regime shows a plateau of residual conductance close to 2e^2/h. The residual conductance is independent of the sample width, indicating that it is caused by edge states. Furthermore, the residual conductance is destroyed by a small external magnetic field. The quantum phase transition at the critical thickness, d = 6.3 nm, is also independently determined from the magnetic field induced insulator to metal transition. These observations provide experimental evidence of the quantum spin Hall effect.Comment: 16 pages, 5 figure
    corecore