3,555 research outputs found

    Elemental distribution and oxygen deficiency of magnetron sputtered ITO films

    Full text link
    The atomic structure and composition of non-interfacial ITO and ITO-Si interfaces were studied with Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). The films were deposited by DC magnetron sputtering on mono-crystalline p-type (100) Si wafers. Both as deposited and heat treated films consisted of crystalline ITO. The ITO/Si interface showed a more complicated composition. A thin layer of SiOx_x was found at the ITO/Si interface together with In and Sn nanoclusters, as well as highly oxygen deficient regions, as observed by XPS. High energy electron exposure of this area crystallized the In nanoclusters and at the same time increased the SiOx_x interface layer thickness

    Isospin splitting in heavy baryons and mesons

    Full text link
    A recent general analysis of light-baryon isospin splittings is updated and extended to charmed baryons. The measured Σc\Sigma_c and Ξc\Xi_c splittings stand out as being difficult to understand in terms of two-body forces alone. We also discuss heavy-light mesons; though the framework here is necessarily less general, we nevertheless obtain some predictions that are not strongly model-dependent.Comment: 12 pages REVTEX 3, plus 4 uuencoded ps figures, CMU-HEP93-

    Dynamics of the Young Binary LMC Cluster NGC 1850

    Full text link
    In this paper we have examined the age and internal dynamics of the young binary LMC cluster NGC 1850 using BV CCD images and echelle spectra of 52 supergiants. Isochrone fits to a BV color-magnitude diagram revealed that the primary cluster has an age of τ=90±30\tau = 90 \pm 30 Myr while the secondary member has τ=6±5\tau = 6 \pm 5 Myr. BV surface brightness profiles were constructed out to R >> 40 pc, and single-component King-Michie (KM) models were applied. The total cluster luminosity varied from LB_B = 2.60 - 2.65 ×106\times 10^6 LB_B\sol\ and LV_V = 1.25 - 1.35 ×106\times 10^6 as the anisotropy radius varied from infinity to three times the scale radius with the isotropic models providing the best agreement with the data. Of the 52 stars with echelle spectra, a subset of 36 were used to study the cluster dynamics. The KM radial velocity distributions were fitted to these velocities yielding total cluster masses of 5.4 - 5.9 ±2.4×104\pm 2.4 \times 10^4 M\sol\ corresponding to M/LB_B = 0.02 ±0.01\pm 0.01 M\sol/LB_B\sol\ or M/LV_V = 0.05 ±0.02\pm 0.02 M\sol/LV_V\sol. A rotational signal in the radial velocities has been detected at the 93\% confidence level implying a rotation axis at a position angle of 100\deg. A variety of rotating models were fit to the velocity data assuming cluster ellipticities of ϵ=0.10.3\epsilon = 0.1 - 0.3. These models provided slightly better agreement with the radial velocity data than the KM models and had masses that were systematically lower by a few percent. The preferred value for the slope of a power-law IMF is a relatively shallow, x = 0.29 \pmm{+0.3}{-0.8} assuming the B-band M/L or x = 0.71 \pmm{+0.2}{-0.4} for the V-band.Comment: 41 pages (figures available via anonymous FTP as described below

    Thurgood Marshall\u27s Dissents in Defense of the Poor

    Get PDF

    The interaction-strength interpolation method for main-group chemistry: benchmarking, limitations, and perspectives

    Full text link
    We have tested the original interaction-strength-interpolation (ISI) exchange-correlation functional for main group chemistry. The ISI functional is based on an interpolation between the weak and strong coupling limits and includes exact-exchange as well as the G\"orling-Levy second-order energy. We have analyzed in detail the basis-set dependence of the ISI functional, its dependence on the ground-state orbitals, and the influence of the size-consistency problem. We show and explain some of the expected limitations of the ISI functional (i.e. for atomization energies), but also unexpected results, such as the good performance for the interaction energy of dispersion-bonded complexes when the ISI correlation is used as a correction to Hartree-Fock.Comment: 20 pages, 20 figure

    A unified convolutional beamformer for simultaneous denoising and dereverberation

    Full text link
    This paper proposes a method for estimating a convolutional beamformer that can perform denoising and dereverberation simultaneously in an optimal way. The application of dereverberation based on a weighted prediction error (WPE) method followed by denoising based on a minimum variance distortionless response (MVDR) beamformer has conventionally been considered a promising approach, however, the optimality of this approach cannot be guaranteed. To realize the optimal integration of denoising and dereverberation, we present a method that unifies the WPE dereverberation method and a variant of the MVDR beamformer, namely a minimum power distortionless response (MPDR) beamformer, into a single convolutional beamformer, and we optimize it based on a single unified optimization criterion. The proposed beamformer is referred to as a Weighted Power minimization Distortionless response (WPD) beamformer. Experiments show that the proposed method substantially improves the speech enhancement performance in terms of both objective speech enhancement measures and automatic speech recognition (ASR) performance.Comment: Published in IEEE Signal Processing Letter

    Advanced Earth-to-orbit propulsion technology program overview: Impact of civil space technology initiative

    Get PDF
    The NASA Earth-to-Orbit (ETO) Propulsion Technology Program is dedicated to advancing rocket engine technologies for the development of fully reusable engine systems that will enable space transportation systems to achieve low cost, routine access to space. The program addresses technology advancements in the areas of engine life extension/prediction, performance enhancements, reduced ground operations costs, and in-flight fault tolerant engine operations. The primary objective is to acquire increased knowledge and understanding of rocket engine chemical and physical processes in order to evolve more realistic analytical simulations of engine internal environments, to derive more accurate predictions of steady and unsteady loads, and using improved structural analyses, to more accurately predict component life and performance, and finally to identify and verify more durable advanced design concepts. In addition, efforts were focused on engine diagnostic needs and advances that would allow integrated health monitoring systems to be developed for enhanced maintainability, automated servicing, inspection, and checkout, and ultimately, in-flight fault tolerant engine operations
    corecore