1,614 research outputs found

    Specifics of cardiac magnetic resonance imaging in children

    Get PDF
    SummaryThis review points out three specific features of cardiac magnetic resonance imaging (MRI) in children: the small size of the heart modifies the usual balance between signal-to-noise ratio and spatial resolution; the higher and more variable heart rate limits tissue characterization and temporal resolution; and motion artefacts (notably respiratory motions) must be dealt with. In the second part of this review, we present the current and future practices of cardiac magnetic resonance (CMR) in children, based on the experience of all French paediatric cardiac MRI centres

    NDC: Analyzing the impact of 3D-stacked memory+logic devices on MapReduce workloads

    Get PDF
    pre-printWhile Processing-in-Memory has been investigated for decades, it has not been embraced commercially. A number of emerging technologies have renewed interest in this topic. In particular, the emergence of 3D stacking and the imminent release of Micron's Hybrid Memory Cube device have made it more practical to move computation near memory. However, the literature is missing a detailed analysis of a killer application that can leverage a Near Data Computing (NDC) architecture. This paper focuses on in-memory MapReduce workloads that are commercially important and are especially suitable for NDC because of their embarrassing parallelism and largely localized memory accesses. The NDC architecture incorporates several simple processing cores on a separate, non-memory die in a 3D-stacked memory package; these cores can perform Map operations with efficient memory access and without hitting the bandwidth wall. This paper describes and evaluates a number of key elements necessary in realizing efficient NDC operation: (i) low-EPI cores, (ii) long daisy chains of memory devices, (iii) the dynamic activation of cores and SerDes links. Compared to a baseline that is heavily optimized for MapReduce execution, the NDC design yields up to 15X reduction in execution time and 18X reduction in system energy

    RELAX: Reinforcement Learning Enabled 2D-LiDAR Autonomous System for Parsimonious UAVs

    Full text link
    Unmanned Aerial Vehicles (UAVs) have become increasingly prominence in recent years, finding applications in surveillance, package delivery, among many others. Despite considerable efforts in developing algorithms that enable UAVs to navigate through complex unknown environments autonomously, they often require expensive hardware and sensors, such as RGB-D cameras and 3D-LiDAR, leading to a persistent trade-off between performance and cost. To this end, we propose RELAX, a novel end-to-end autonomous framework that is exceptionally cost-efficient, requiring only a single 2D-LiDAR to enable UAVs operating in unknown environments. Specifically, RELAX comprises three components: a pre-processing map constructor; an offline mission planner; and a reinforcement learning (RL)-based online re-planner. Experiments demonstrate that RELAX offers more robust dynamic navigation compared to existing algorithms, while only costing a fraction of the others. The code will be made public upon acceptance

    The Circuit, Spring 2016

    Get PDF
    Table of Contents: Gift Acknowledgements Catching up with Professor John Lukowski Faculty News Institute of Computing and Cybersystems Christopher Middlebrook, The Optical Connection Lucia Gauchia, Extending Battery Life Student News Alumni Spotlight Swenson Family Legacy New Staffhttps://digitalcommons.mtu.edu/ece-newsletters/1003/thumbnail.jp

    Implementation of a Distributed Architecture for Managing Collection and Dissemination of Data for Fetal Alcohol Spectrum Disorder

    Get PDF
    We implemented a distributed system for management of data for an international collaboration studying Fetal Alcohol Spectrum Disorders (FASD). Subject privacy was protected, researchers without dependable Internet access were accommodated, and researchers’ data were shared globally. Data dictionaries codified the nature of the data being integrated, data compliance was assured through multiple consistency checks, and recovery systems provided a secure, robust, persistent repository. The system enabled new types of science to be done, using distributed technologies that are expedient for current needs while taking useful steps towards integrating the system in a future grid-based cyberinfrastructure. The distributed architecture, verification steps, and data dictionaries suggest general strategies for researchers involved in collaborative studies, particularly where data must be de-identified before being shared. The system met both the collaboration’s needs and the NIH Roadmap’s goal of wide access to databases that are robust and adaptable to researchers’ needs

    EDGAR: An Autonomous Driving Research Platform -- From Feature Development to Real-World Application

    Full text link
    While current research and development of autonomous driving primarily focuses on developing new features and algorithms, the transfer from isolated software components into an entire software stack has been covered sparsely. Besides that, due to the complexity of autonomous software stacks and public road traffic, the optimal validation of entire stacks is an open research problem. Our paper targets these two aspects. We present our autonomous research vehicle EDGAR and its digital twin, a detailed virtual duplication of the vehicle. While the vehicle's setup is closely related to the state of the art, its virtual duplication is a valuable contribution as it is crucial for a consistent validation process from simulation to real-world tests. In addition, different development teams can work with the same model, making integration and testing of the software stacks much easier, significantly accelerating the development process. The real and virtual vehicles are embedded in a comprehensive development environment, which is also introduced. All parameters of the digital twin are provided open-source at https://github.com/TUMFTM/edgar_digital_twin

    LIDAR obstacle warning and avoidance system for unmanned aerial vehicle sense-and-avoid

    Get PDF
    The demand for reliable obstacle warning and avoidance capabilities to ensure safe low-level flight operations has led to the development of various practical systems suitable for fixed and rotary wing aircraft. State-of-the-art Light Detection and Ranging (LIDAR) technology employing eye-safe laser sources, advanced electro-optics and mechanical beam-steering components delivers the highest angular resolution and accuracy performances in a wide range of operational conditions. LIDAR Obstacle Warning and Avoidance System (LOWAS) is thus becoming a mature technology with several potential applications to manned and unmanned aircraft. This paper addresses specifically its employment in Unmanned Aircraft Systems (UAS) Sense-and-Avoid (SAA). Small-to-medium size Unmanned Aerial Vehicles (UAVs) are particularly targeted since they are very frequently operated in proximity of the ground and the possibility of a collision is further aggravated by the very limited see-and-avoid capabilities of the remote pilot. After a brief description of the system architecture, mathematical models and algorithms for avoidance trajectory generation are provided. Key aspects of the Human Machine Interface and Interaction (HMI2) design for the UAS obstacle avoidance system are also addressed. Additionally, a comprehensive simulation case study of the avoidance trajectory generation algorithms is presented. It is concluded that LOWAS obstacle detection and trajectory optimisation algorithms can ensure a safe avoidance of all classes of obstacles (i.e., wire, extended and point objects) in a wide range of weather and geometric conditions, providing a pathway for possible integration of this technology into future UAS SAA architectures
    • …
    corecore