184 research outputs found

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Proceedings of the 8th Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE 2023)

    Get PDF
    This volume gathers the papers presented at the Detection and Classification of Acoustic Scenes and Events 2023 Workshop (DCASE2023), Tampere, Finland, during 21–22 September 2023

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Robots learn to behave: improving human-robot collaboration in flexible manufacturing applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    A Framework for Offline Risk-aware Planning of Low-altitude Aerial Flights during Urban Disaster Response

    Get PDF
    Disaster response missions are dynamic and dangerous events for first responders. Active situational awareness is critical for effective decision-making, and unmanned aerial assets have successfully extended the range and output of sensors. Aerial assets have demonstrated their capability in disaster response missions via decentralized operations. However, literature and industry lack a systematic investigation of the algorithms, datasets, and tools for aerial system trajectory planning in urban disasters that optimizes mission performance and guarantee mission success. This work seeks to develop a framework and software environment to investigate the requirements for offline planning algorithms and flight risk models when applied to aerial assets exploring urban disaster zones. This is addressed through the creation of rapid urban maps, efficient flight planning algorithms, and formal risk metrics that are demonstrated in scenario-driven experiments using Monte Carlo simulation. First, rapid urban mapping strategies are independently compared for efficient processing and storage through obstacle and terrain layers. Open-source data is used when available and is supplemented with an urban feature prediction model trained on satellite imagery using deep learning. Second, sampling-based planners are evaluated for efficient and effective trajectory planning of nonlinear aerial dynamic systems. The algorithm can find collision-free, kinodynamic feasible trajectories using random open-loop control targets. Alternative open-loop control commands are formed to improve the planning algorithm’s speed and convergence. Third, a risk-aware implementation of the planning algorithm is developed that considers the uncertainty of energy, collisions, and onboard viewpoint data and maps them to a single measure of the likelihood of mission failure. The three modules are combined in a framework where the rapid urban maps and risk-aware planner are evaluated against benchmarks for mission success, performance, and speed while creating a unique set of benchmarks from open-source data and software. One, the rapid urban map module generates a 3D structure and terrain map within 20 meters of data and in less than 5 minutes. The Gaussian Process terrain model performs better than B-spline and NURBS models in small-scale, mountainous environments at 10-meter squared resolution. Supplementary data for structures and other urban landcover features is predicted using the Pix2Pix Generative Adversarial Network with a 3-channel encoding for nine labels. Structures, greenspaces, water, and roads are predicted with high accuracy according to the F1, OIU, and pixel accuracy metrics. Two, the sampling-based planning algorithm is selected for forming collision-free, 3D offline flight paths with a black-box dynamics model of a quadcopter. Sampling-based planners prove successful for efficient and optimal flight paths through randomly generated and rapid urban maps, even under wind and noise uncertainty. The Stable-Sparse-RRT, SST, algorithm is shown to improve trajectories for minimum Euclidean distance more consistently and efficiently than the RRT algorithm, with a 50% improvement in finite-time path convergence for large-scale urban maps. The forward propagation dynamics of the black-box model are replaced with 5-15 times more computationally efficient motion primitives that are generated using an inverse lower-order dynamics model and the Differential Dynamic Programming, DDP, algorithm. Third, the risk-aware planning algorithm is developed that generates optimal paths based on three risk metrics of energy, collision, and viewpoint risk and quantifies the likelihood of worst-case events using the Conditional-Value-at-Risk, CVaR, metric. The sampling-based planning algorithm is improved with informative paths, and three versions of the algorithm are compared for the best performance in different scenarios. Energy risk in the planning algorithm results in 5-35% energy reduction and 20-30% more consistency in finite-time convergence for flight paths in large-scale urban maps. All three risk metrics in the planning algorithm generally result in more energy use than the planner with only energy risk, but reduce the mean flight path risk by 10-50% depending on the environment, energy available, and viewpoint landmarks. A final experiment in an Atlanta flooding scenario demonstrates the framework’s full capability with the rapid urban map displaying essential features and the trajectory planner reporting flight time, energy consumption, and total risk. Furthermore, the simulation environment provides insight into offline planning limitations through Monte Carlo simulations with environment wind and system dynamics noise. The framework and software environment are made available to use as benchmarks in the field to serve as a foundation for increasing the effectiveness of first responders’ safety in the challenging task of urban disaster response.Ph.D

    Operational research:methods and applications

    Get PDF
    Throughout its history, Operational Research has evolved to include a variety of methods, models and algorithms that have been applied to a diverse and wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first aims to summarise the up-to-date knowledge and provide an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion. It should be used as a point of reference or first-port-of-call for a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum
    corecore