6,289 research outputs found
Mesh-based 3D Textured Urban Mapping
In the era of autonomous driving, urban mapping represents a core step to let
vehicles interact with the urban context. Successful mapping algorithms have
been proposed in the last decade building the map leveraging on data from a
single sensor. The focus of the system presented in this paper is twofold: the
joint estimation of a 3D map from lidar data and images, based on a 3D mesh,
and its texturing. Indeed, even if most surveying vehicles for mapping are
endowed by cameras and lidar, existing mapping algorithms usually rely on
either images or lidar data; moreover both image-based and lidar-based systems
often represent the map as a point cloud, while a continuous textured mesh
representation would be useful for visualization and navigation purposes. In
the proposed framework, we join the accuracy of the 3D lidar data, and the
dense information and appearance carried by the images, in estimating a
visibility consistent map upon the lidar measurements, and refining it
photometrically through the acquired images. We evaluate the proposed framework
against the KITTI dataset and we show the performance improvement with respect
to two state of the art urban mapping algorithms, and two widely used surface
reconstruction algorithms in Computer Graphics.Comment: accepted at iros 201
Frequency-modulated continuous-wave LiDAR compressive depth-mapping
We present an inexpensive architecture for converting a frequency-modulated
continuous-wave LiDAR system into a compressive-sensing based depth-mapping
camera. Instead of raster scanning to obtain depth-maps, compressive sensing is
used to significantly reduce the number of measurements. Ideally, our approach
requires two difference detectors. % but can operate with only one at the cost
of doubling the number of measurments. Due to the large flux entering the
detectors, the signal amplification from heterodyne detection, and the effects
of background subtraction from compressive sensing, the system can obtain
higher signal-to-noise ratios over detector-array based schemes while scanning
a scene faster than is possible through raster-scanning. %Moreover, we show how
a single total-variation minimization and two fast least-squares minimizations,
instead of a single complex nonlinear minimization, can efficiently recover
high-resolution depth-maps with minimal computational overhead. Moreover, by
efficiently storing only data points from measurements of an
pixel scene, we can easily extract depths by solving only two linear equations
with efficient convex-optimization methods
Robust Dense Mapping for Large-Scale Dynamic Environments
We present a stereo-based dense mapping algorithm for large-scale dynamic
urban environments. In contrast to other existing methods, we simultaneously
reconstruct the static background, the moving objects, and the potentially
moving but currently stationary objects separately, which is desirable for
high-level mobile robotic tasks such as path planning in crowded environments.
We use both instance-aware semantic segmentation and sparse scene flow to
classify objects as either background, moving, or potentially moving, thereby
ensuring that the system is able to model objects with the potential to
transition from static to dynamic, such as parked cars. Given camera poses
estimated from visual odometry, both the background and the (potentially)
moving objects are reconstructed separately by fusing the depth maps computed
from the stereo input. In addition to visual odometry, sparse scene flow is
also used to estimate the 3D motions of the detected moving objects, in order
to reconstruct them accurately. A map pruning technique is further developed to
improve reconstruction accuracy and reduce memory consumption, leading to
increased scalability. We evaluate our system thoroughly on the well-known
KITTI dataset. Our system is capable of running on a PC at approximately 2.5Hz,
with the primary bottleneck being the instance-aware semantic segmentation,
which is a limitation we hope to address in future work. The source code is
available from the project website (http://andreibarsan.github.io/dynslam).Comment: Presented at IEEE International Conference on Robotics and Automation
(ICRA), 201
Quantum-inspired computational imaging
Computational imaging combines measurement and computational methods with the aim of forming images even when the measurement conditions are weak, few in number, or highly indirect. The recent surge in quantum-inspired imaging sensors, together with a new wave of algorithms allowing on-chip, scalable and robust data processing, has induced an increase of activity with notable results in the domain of low-light flux imaging and sensing. We provide an overview of the major challenges encountered in low-illumination (e.g., ultrafast) imaging and how these problems have recently been addressed for imaging applications in extreme conditions. These methods provide examples of the future imaging solutions to be developed, for which the best results are expected to arise from an efficient codesign of the sensors and data analysis tools.Y.A. acknowledges support from the UK Royal Academy of Engineering under the Research Fellowship Scheme (RF201617/16/31). S.McL. acknowledges financial support from the UK Engineering and Physical Sciences Research Council (grant EP/J015180/1). V.G. acknowledges support from the U.S. Defense Advanced Research Projects Agency (DARPA) InPho program through U.S. Army Research Office award W911NF-10-1-0404, the U.S. DARPA REVEAL program through contract HR0011-16-C-0030, and U.S. National Science Foundation through grants 1161413 and 1422034. A.H. acknowledges support from U.S. Army Research Office award W911NF-15-1-0479, U.S. Department of the Air Force grant FA8650-15-D-1845, and U.S. Department of Energy National Nuclear Security Administration grant DE-NA0002534. D.F. acknowledges financial support from the UK Engineering and Physical Sciences Research Council (grants EP/M006514/1 and EP/M01326X/1). (RF201617/16/31 - UK Royal Academy of Engineering; EP/J015180/1 - UK Engineering and Physical Sciences Research Council; EP/M006514/1 - UK Engineering and Physical Sciences Research Council; EP/M01326X/1 - UK Engineering and Physical Sciences Research Council; W911NF-10-1-0404 - U.S. Defense Advanced Research Projects Agency (DARPA) InPho program through U.S. Army Research Office; HR0011-16-C-0030 - U.S. DARPA REVEAL program; 1161413 - U.S. National Science Foundation; 1422034 - U.S. National Science Foundation; W911NF-15-1-0479 - U.S. Army Research Office; FA8650-15-D-1845 - U.S. Department of the Air Force; DE-NA0002534 - U.S. Department of Energy National Nuclear Security Administration)Accepted manuscrip
Point cloud segmentation using hierarchical tree for architectural models
Recent developments in the 3D scanning technologies have made the generation
of highly accurate 3D point clouds relatively easy but the segmentation of
these point clouds remains a challenging area. A number of techniques have set
precedent of either planar or primitive based segmentation in literature. In
this work, we present a novel and an effective primitive based point cloud
segmentation algorithm. The primary focus, i.e. the main technical contribution
of our method is a hierarchical tree which iteratively divides the point cloud
into segments. This tree uses an exclusive energy function and a 3D
convolutional neural network, HollowNets to classify the segments. We test the
efficacy of our proposed approach using both real and synthetic data obtaining
an accuracy greater than 90% for domes and minarets.Comment: 9 pages. 10 figures. Submitted in EuroGraphics 201
Towards online mobile mapping using inhomogeneous lidar data
In this paper we present a novel approach to quickly obtain detailed 3D reconstructions of large scale environments. The method is based on the consecutive registration of 3D point clouds generated by modern lidar scanners such as the Velodyne HDL-32e or HDL-64e. The main contribution of this work is that the proposed system specifically deals with the problem of sparsity and inhomogeneity of the point clouds typically produced by these scanners. More specifically, we combine the simplicity of the traditional iterative closest point (ICP) algorithm with the analysis of the underlying surface of each point in a local neighbourhood. The algorithm was evaluated on our own collected dataset captured with accurate ground truth. The experiments demonstrate that the system is producing highly detailed 3D maps at the speed of 10 sensor frames per second
- …
