2,201 research outputs found

    Control Barrier Functions: Theory and Applications

    Get PDF
    This paper provides an introduction and overview of recent work on control barrier functions and their use to verify and enforce safety properties in the context of (optimization based) safety-critical controllers. We survey the main technical results and discuss applications to several domains including robotic systems

    Control Barrier Functions: Theory and Applications

    Get PDF
    This paper provides an introduction and overview of recent work on control barrier functions and their use to verify and enforce safety properties in the context of (optimization based) safety-critical controllers. We survey the main technical results and discuss applications to several domains including robotic systems

    Safe Whole-Body Task Space Control for Humanoid Robots

    Full text link
    Complex robotic systems require whole-body controllers to deal with contact interactions, handle closed kinematic chains, and track task-space control objectives. However, for many applications, safety-critical controllers are important to steer away from undesired robot configurations to prevent unsafe behaviors. A prime example is legged robotics, where we can have tasks such as balance control, regulation of torso orientation, and, most importantly, walking. As the coordination of multi-body systems is non-trivial, following a combination of those tasks might lead to configurations that are deemed dangerous, such as stepping on its support foot during walking, leaning the torso excessively, or producing excessive centroidal momentum, resulting in non-human-like walking. To address these challenges, we propose a formulation of an inverse dynamics control enhanced with exponential control barrier functions for robotic systems with numerous degrees of freedom. Our approach utilizes a quadratic program that respects closed kinematic chains, minimizes the control objectives, and imposes desired constraints on the Zero Moment Point, friction cone, and torque. More importantly, it also ensures the forward invariance of a general user-defined high Relative-Degree safety set. We demonstrate the effectiveness of our method by applying it to the 3D biped robot Digit, both in simulation and with hardware experiments.Comment: 8 pages, 12 figure

    Risk-Sensitive Path Planning via CVaR Barrier Functions: Application to Bipedal Locomotion

    Get PDF
    Enforcing safety of robotic systems in the presence of stochastic uncertainty is a challenging problem. Traditionally,researchers have proposed safety in the statistical mean as a safety measure in this case. However, ensuring safety in the statistical mean is only reasonable if robot safe behavior in the large number of runs is of interest, which precludes the use of mean safety in practical scenarios. In this paper, we propose a risk sensitive notion of safety called conditional-value-at-risk (CVaR) safety, which is concerned with safe performance in the worst case realizations. We introduce CVaR barrier functions asa tool to enforce CVaR safety and propose conditions for their Boolean compositions. Given a legacy controller, we show that we can design a minimally interfering CVaR safe controller via solving difference convex programs. We elucidate the proposed method by applying it to a bipedal locomotion case study

    Impact-Aware Online Motion Planning for Fully-Actuated Bipedal Robot Walking

    Full text link
    The ability to track a general walking path with specific timing is crucial to the operational safety and reliability of bipedal robots for avoiding dynamic obstacles, such as pedestrians, in complex environments. This paper introduces an online, full-body motion planner that generates the desired impact-aware motion for fully-actuated bipedal robotic walking. The main novelty of the proposed planner lies in its capability of producing desired motions in real-time that respect the discrete impact dynamics and the desired impact timing. To derive the proposed planner, a full-order hybrid dynamic model of fully-actuated bipedal robotic walking is presented, including both continuous dynamics and discrete lading impacts. Next, the proposed impact-aware online motion planner is introduced. Finally, simulation results of a 3-D bipedal robot are provided to confirm the effectiveness of the proposed online impact-aware planner. The online planner is capable of generating full-body motion of one walking step within 0.6 second, which is shorter than a typical bipedal walking step

    Safe Learning of Quadrotor Dynamics Using Barrier Certificates

    Full text link
    To effectively control complex dynamical systems, accurate nonlinear models are typically needed. However, these models are not always known. In this paper, we present a data-driven approach based on Gaussian processes that learns models of quadrotors operating in partially unknown environments. What makes this challenging is that if the learning process is not carefully controlled, the system will go unstable, i.e., the quadcopter will crash. To this end, barrier certificates are employed for safe learning. The barrier certificates establish a non-conservative forward invariant safe region, in which high probability safety guarantees are provided based on the statistics of the Gaussian Process. A learning controller is designed to efficiently explore those uncertain states and expand the barrier certified safe region based on an adaptive sampling scheme. In addition, a recursive Gaussian Process prediction method is developed to learn the complex quadrotor dynamics in real-time. Simulation results are provided to demonstrate the effectiveness of the proposed approach.Comment: Submitted to ICRA 2018, 8 page
    • …
    corecore