1,102 research outputs found

    Wireless Communication in Data Centers: A Survey

    Get PDF
    Data centers (DCs) is becoming increasingly an integral part of the computing infrastructures of most enterprises. Therefore, the concept of DC networks (DCNs) is receiving an increased attention in the network research community. Most DCNs deployed today can be classified as wired DCNs as copper and optical fiber cables are used for intra- and inter-rack connections in the network. Despite recent advances, wired DCNs face two inevitable problems; cabling complexity and hotspots. To address these problems, recent research works suggest the incorporation of wireless communication technology into DCNs. Wireless links can be used to either augment conventional wired DCNs, or to realize a pure wireless DCN. As the design spectrum of DCs broadens, so does the need for a clear classification to differentiate various design options. In this paper, we analyze the free space optical (FSO) communication and the 60 GHz radio frequency (RF), the two key candidate technologies for implementing wireless links in DCNs. We present a generic classification scheme that can be used to classify current and future DCNs based on the communication technology used in the network. The proposed classification is then used to review and summarize major research in this area. We also discuss open questions and future research directions in the area of wireless DCs

    A Vision of Self-Evolving Network Management for Future Intelligent Vertical HetNet

    Full text link
    Future integrated terrestrial-aerial-satellite networks will have to exhibit some unprecedented characteristics for the provision of both communications and computation services, and security for a tremendous number of devices with very broad and demanding requirements in an almost-ubiquitous manner. Although 3GPP introduced the concept of self-organization networks (SONs) in 4G and 5G documents to automate network management, even this progressive concept will face several challenges as it may not be sufficiently agile in coping with the immense levels of complexity, heterogeneity, and mobility in the envisioned beyond-5G integrated networks. In the presented vision, we discuss how future integrated networks can be intelligently and autonomously managed to efficiently utilize resources, reduce operational costs, and achieve the targeted Quality of Experience (QoE). We introduce the novel concept of self-evolving networks (SENs) framework, which utilizes artificial intelligence, enabled by machine learning (ML) algorithms, to make future integrated networks fully intelligent and automated with respect to the provision, adaptation, optimization, and management aspects of networking, communications, and computation. To envisage the concept of SEN in future integrated networks, we use the Intelligent Vertical Heterogeneous Network (I-VHetNet) architecture as our reference. The paper discusses five prominent communications and computation scenarios where SEN plays the main role in providing automated network management. Numerical results provide an insight on how the SEN framework improves the performance of future integrated networks. The paper presents the leading enablers and examines the challenges associated with the application of SEN concept in future integrated networks
    • …
    corecore