2 research outputs found

    3D Transition Matrix Solution for a Path Dependency Problem of Markov Chains-Based Prediction in Cellular Networks

    Get PDF
    Handover (HO) management is one of the critical challenges in current and future mobile communication systems due to new technologies being deployed at a network level, such as small and femtocells. Because of the smaller sizes of cells, users are expected to perform more frequent HOs, which can increase signaling costs and also decrease user's performance, if a HO is performed poorly. In order to address this issue, predictive HO techniques, such as Markov chains (MC), have been introduced in the literature due to their simplicity and generality. This technique, however, experiences a path dependency problem, specially when a user performs a HO to the same cell, also known as a re-visit. In this paper, the path dependency problem of this kind of predictors is tackled by introducing a new 3D transition matrix, which has an additional dimension representing the orders of HOs, instead of a conventional 2D one. Results show that the proposed algorithm outperforms the classical MC based predictors both in terms of accuracy and HO cost when re-visits are considered

    The role of artificial intelligence driven 5G networks in COVID-19 outbreak: opportunities, challenges, and future outlook

    Get PDF
    There is no doubt that the world is currently experiencing a global pandemic that is reshaping our daily lives as well as the way business activities are being conducted. With the emphasis on social distancing as an effective means of curbing the rapid spread of the infection, many individuals, institutions, and industries have had to rely on telecommunications as a means of ensuring service continuity in order to prevent complete shutdown of their operations. This has put enormous pressure on both fixed and mobile networks. Though fifth generation mobile networks (5G) is at its infancy in terms of deployment, it possesses a broad category of services including enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC), that can help in tackling pandemic-related challenges. Therefore, in this paper, we identify the challenges facing existing networks due to the surge in traffic demand as a result of the COVID-19 pandemic and emphasize the role of 5G empowered by artificial intelligence in tackling these problems. In addition, we also provide a brief insight on the use of artificial intelligence driven 5G networks in predicting future pandemic outbreaks, and the development a pandemic-resilient society in case of future outbreaks
    corecore