5 research outputs found

    Local Analysis of Human Cortex in MRI Brain Volume

    Get PDF
    This paper describes a method for subcortical identification and labeling of 3D medical MRI images. Indeed, the ability to identify similarities between the most characteristic subcortical structures such as sulci and gyri is helpful for human brain mapping studies in general and medical diagnosis in particular. However, these structures vary greatly from one individual to another because they have different geometric properties. For this purpose, we have developed an efficient tool that allows a user to start with brain imaging, to segment the border gray/white matter, to simplify the obtained cortex surface, and to describe this shape locally in order to identify homogeneous features. In this paper, a segmentation procedure using geometric curvature properties that provide an efficient discrimination for local shape is implemented on the brain cortical surface. Experimental results demonstrate the effectiveness and the validity of our approach

    Fast and robust hybrid framework for infant brain classification from structural MRI : a case study for early diagnosis of autism.

    Get PDF
    The ultimate goal of this work is to develop a computer-aided diagnosis (CAD) system for early autism diagnosis from infant structural magnetic resonance imaging (MRI). The vital step to achieve this goal is to get accurate segmentation of the different brain structures: whitematter, graymatter, and cerebrospinal fluid, which will be the main focus of this thesis. The proposed brain classification approach consists of two major steps. First, the brain is extracted based on the integration of a stochastic model that serves to learn the visual appearance of the brain texture, and a geometric model that preserves the brain geometry during the extraction process. Secondly, the brain tissues are segmented based on shape priors, built using a subset of co-aligned training images, that is adapted during the segmentation process using first- and second-order visual appearance features of infant MRIs. The accuracy of the presented segmentation approach has been tested on 300 infant subjects and evaluated blindly on 15 adult subjects. The experimental results have been evaluated by the MICCAI MR Brain Image Segmentation (MRBrainS13) challenge organizers using three metrics: Dice coefficient, 95-percentile Hausdorff distance, and absolute volume difference. The proposed method has been ranked the first in terms of performance and speed

    Slantlet transform-based segmentation and α -shape theory-based 3D visualization and volume calculation methods for MRI brain tumour

    Get PDF
    Magnetic Resonance Imaging (MRI) being the foremost significant component of medical diagnosis which requires careful, efficient, precise and reliable image analyses for brain tumour detection, segmentation, visualisation and volume calculation. The inherently varying nature of tumour shapes, locations and image intensities make brain tumour detection greatly intricate. Certainly, having a perfect result of brain tumour detection and segmentation is advantageous. Despite several available methods, tumour detection and segmentation are far from being resolved. Meanwhile, the progress of 3D visualisation and volume calculation of brain tumour is very limited due to absence of ground truth. Thus, this study proposes four new methods, namely abnormal MRI slice detection, brain tumour segmentation based on Slantlet Transform (SLT), 3D visualization and volume calculation of brain tumour based on Alpha (α) shape theory. In addition, two new datasets along with ground truth are created to validate the shape and volume of the brain tumour. The methodology involves three main phases. In the first phase, it begins with the cerebral tissue extraction, followed by abnormal block detection and its fine-tuning mechanism, and ends with abnormal slice detection based on the detected abnormal blocks. The second phase involves brain tumour segmentation that covers three processes. The abnormal slice is first decomposed using the SLT, then its significant coefficients are selected using Donoho universal threshold. The resultant image is composed using inverse SLT to obtain the tumour region. Finally, in the third phase, four original ideas are proposed to visualise and calculate the volume of the tumour. The first idea involves the determination of an optimal α value using a new formula. The second idea is to merge all tumour points for all abnormal slices using the α value to form a set of tetrahedrons. The third idea is to select the most relevant tetrahedrons using the α value as the threshold. The fourth idea is to calculate the volume of the tumour based on the selected tetrahedrons. In order to evaluate the performance of the proposed methods, a series of experiments are conducted using three standard datasets which comprise of 4567 MRI slices of 35 patients. The methods are evaluated using standard practices and benchmarked against the best and up-to-date techniques. Based on the experiments, the proposed methods have produced very encouraging results with an accuracy rate of 96% for the abnormality slice detection along with sensitivity and specificity of 99% for brain tumour segmentation. A perfect result for the 3D visualisation and volume calculation of brain tumour is also attained. The admirable features of the results suggest that the proposed methods may constitute a basis for reliable MRI brain tumour diagnosis and treatments

    A CAD system for early diagnosis of autism using different imaging modalities.

    Get PDF
    The term “autism spectrum disorder” (ASD) refers to a collection of neuro-developmental disorders that affect linguistic, behavioral, and social skills. Autism has many symptoms, most prominently, social impairment and repetitive behaviors. It is crucial to diagnose autism at an early stage for better assessment and investigation of this complex syndrome. There have been a lot of efforts to diagnose ASD using different techniques, such as imaging modalities, genetic techniques, and behavior reports. Imaging modalities have been extensively exploited for ASD diagnosis, and one of the most successful ones is Magnetic resonance imaging(MRI),where it has shown promise for the early diagnosis of the ASD related abnormalities in particular. Magnetic resonance imaging (MRI) modalities have emerged as powerful means that facilitate non-invasive clinical diagnostics of various diseases and abnormalities since their inception in the 1980s. After the advent in the nineteen eighties, MRI soon became one of the most promising non- invasive modalities for visualization and diagnostics of ASD-related abnormalities. Along with its main advantage of no exposure to radiation, high contrast, and spatial resolution, the recent advances to MRI modalities have notably increased diagnostic certainty. Multiple MRI modalities, such as different types of structural MRI (sMRI) that examines anatomical changes, and functional MRI (fMRI) that examines brain activity by monitoring blood flow changes,have been employed to investigate facets of ASD in order to better understand this complex syndrome. This work aims at developing a new computer-aided diagnostic (CAD) system for autism diagnosis using different imaging modalities. It mainly relies on making use of structural magnetic resonance images for extracting notable shape features from parts of the brainthat proved to correlate with ASD from previous neuropathological studies. Shape features from both the cerebral cortex (Cx) and cerebral white matter(CWM)are extracted. Fusion of features from these two structures is conducted based on the recent findings suggesting that Cx changes in autism are related to CWM abnormalities. Also, when fusing features from more than one structure, this would increase the robustness of the CAD system. Moreover, fMRI experiments are done and analyzed to find areas of activation in the brains of autistic and typically developing individuals that are related to a specific task. All sMRI findings are fused with those of fMRI to better understand ASD in terms of both anatomy and functionality,and thus better classify the two groups. This is one aspect of the novelty of this CAD system, where sMRI and fMRI studies are both applied on subjects from different ages to diagnose ASD. In order to build such a CAD system, three main blocks are required. First, 3D brain segmentation is applied using a novel hybrid model that combines shape, intensity, and spatial information. Second, shape features from both Cx and CWM are extracted and anf MRI reward experiment is conducted from which areas of activation that are related to the task of this experiment are identified. Those features were extracted from local areas of the brain to provide an accurate analysis of ASD and correlate it with certain anatomical areas. Third and last, fusion of all the extracted features is done using a deep-fusion classification network to perform classification and obtain the diagnosis report. Fusing features from all modalities achieved a classification accuracy of 94.7%, which emphasizes the significance of combining structures/modalities for ASD diagnosis. To conclude, this work could pave the pathway for better understanding of the autism spectrum by finding local areas that correlate to the disease. The idea of personalized medicine is emphasized in this work, where the proposed CAD system holds the promise to resolve autism endophenotypes and help clinicians deliver personalized treatment to individuals affected with this complex syndrome
    corecore