3,372 research outputs found

    A real-time human-robot interaction system based on gestures for assistive scenarios

    Get PDF
    Natural and intuitive human interaction with robotic systems is a key point to develop robots assisting people in an easy and effective way. In this paper, a Human Robot Interaction (HRI) system able to recognize gestures usually employed in human non-verbal communication is introduced, and an in-depth study of its usability is performed. The system deals with dynamic gestures such as waving or nodding which are recognized using a Dynamic Time Warping approach based on gesture specific features computed from depth maps. A static gesture consisting in pointing at an object is also recognized. The pointed location is then estimated in order to detect candidate objects the user may refer to. When the pointed object is unclear for the robot, a disambiguation procedure by means of either a verbal or gestural dialogue is performed. This skill would lead to the robot picking an object in behalf of the user, which could present difficulties to do it by itself. The overall system — which is composed by a NAO and Wifibot robots, a KinectTM v2 sensor and two laptops — is firstly evaluated in a structured lab setup. Then, a broad set of user tests has been completed, which allows to assess correct performance in terms of recognition rates, easiness of use and response times.Postprint (author's final draft

    Random Forests for Real Time 3D Face Analysis

    Get PDF
    We present a random forest-based framework for real time head pose estimation from depth images and extend it to localize a set of facial features in 3D. Our algorithm takes a voting approach, where each patch extracted from the depth image can directly cast a vote for the head pose or each of the facial features. Our system proves capable of handling large rotations, partial occlusions, and the noisy depth data acquired using commercial sensors. Moreover, the algorithm works on each frame independently and achieves real time performance without resorting to parallel computations on a GPU. We present extensive experiments on publicly available, challenging datasets and present a new annotated head pose database recorded using a Microsoft Kinec

    Unobtrusive and pervasive video-based eye-gaze tracking

    Get PDF
    Eye-gaze tracking has long been considered a desktop technology that finds its use inside the traditional office setting, where the operating conditions may be controlled. Nonetheless, recent advancements in mobile technology and a growing interest in capturing natural human behaviour have motivated an emerging interest in tracking eye movements within unconstrained real-life conditions, referred to as pervasive eye-gaze tracking. This critical review focuses on emerging passive and unobtrusive video-based eye-gaze tracking methods in recent literature, with the aim to identify different research avenues that are being followed in response to the challenges of pervasive eye-gaze tracking. Different eye-gaze tracking approaches are discussed in order to bring out their strengths and weaknesses, and to identify any limitations, within the context of pervasive eye-gaze tracking, that have yet to be considered by the computer vision community.peer-reviewe

    Estimating Point of Regard with a Consumer Camera at a Distance

    Full text link
    In this work, we have studied the viability of a novel technique to estimate the POR that only requires video feed from a consumer camera. The system can work under uncontrolled light conditions and does not require any complex hardware setup. To that end we propose a system that uses PCA feature extraction from the eyes region followed by non-linear regression. We evaluated three state of the art non-linear regression algorithms. In the study, we also compared the performance using a high quality webcam versus a Kinect sensor. We found, that despite the relatively low quality of the Kinect images it achieves similar performance compared to the high quality camera. These results show that the proposed approach could be extended to estimate POR in a completely non-intrusive way.Mansanet Sandin, J.; Albiol Colomer, A.; Paredes Palacios, R.; Mossi García, JM.; Albiol Colomer, AJ. (2013). Estimating Point of Regard with a Consumer Camera at a Distance. En Pattern Recognition and Image Analysis. Springer Verlag. 7887:881-888. doi:10.1007/978-3-642-38628-2_104S8818887887Baluja, S., Pomerleau, D.: Non-intrusive gaze tracking using artificial neural networks. Technical report (1994)Breiman, L.: Random forests. Machine Learning (2001)Logitech HD Webcam C525, http://www.logitech.com/es-es/webcam-communications/webcams/hd-webcam-c525Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines. ACM TIST (2011), Software, http://www.csie.ntu.edu.tw/~cjlin/libsvmDrucker, H., Burges, C., Kaufman, L., Smola, A., Vapnik, V.: Support vector regression machines (1996)Hansen, D.W., Ji, Q. In: the eye of the beholder: A survey of models for eyes and gaze. IEEE Transactions on PAMI (2010)Ji, Q., Yang, X.: Real-time eye, gaze, and face pose tracking for monitoring driver vigilance. Real-Time Imaging (2002)Kalman, R.E.: A new approach to linear filtering and prediction problems. Transactions of the ASME–Journal of Basic Engineering (1960)Microsoft Kinect, http://www.microsoft.com/en-us/kinectforwindowsTimmerman, M.E.: Principal component analysis (2nd ed.). i. t. jolliffe. Journal of the American Statistical Association (2003)Morimoto, C.H., Mimica, M.R.M.: Eye gaze tracking techniques for interactive applications. Comput. Vis. Image Underst. (2005)Pirri, F., Pizzoli, M., Rudi, A.: A general method for the point of regard estimation in 3d space. In: Proceedings of the IEEE Conference on CVPR (2011)Reale, M.J., Canavan, S., Yin, L., Hu, K., Hung, T.: A multi-gesture interaction system using a 3-d iris disk model for gaze estimation and an active appearance model for 3-d hand pointing. IEEE Transactions on Multimedia (2011)Saragih, J.M., Lucey, S., Cohn, J.F.: Face alignment through subspace constrained mean-shifts. In: International Conference of Computer Vision, ICCV (2009)Kar-Han, T., Kriegman, D.J., Ahuja, N.: Appearance-based eye gaze estimation. In: Applications of Computer Vision (2002)Takemura, K., Kohashi, Y., Suenaga, T., Takamatsu, J., Ogasawara, T.: Estimating 3d point-of-regard and visualizing gaze trajectories under natural head movements. In: Symposium on Eye-Tracking Research and Applications (2010)Villanueva, A., Cabeza, R., Porta, S.: Eye tracking: Pupil orientation geometrical modeling. Image and Vision Computing (2006)Williams, O., Blake, A., Cipolla, R.: Sparse and semi-supervised visual mapping with the s3gp. In: IEEE Computer Society Conference on CVPR (2006

    A Survey of Applications and Human Motion Recognition with Microsoft Kinect

    Get PDF
    Microsoft Kinect, a low-cost motion sensing device, enables users to interact with computers or game consoles naturally through gestures and spoken commands without any other peripheral equipment. As such, it has commanded intense interests in research and development on the Kinect technology. In this paper, we present, a comprehensive survey on Kinect applications, and the latest research and development on motion recognition using data captured by the Kinect sensor. On the applications front, we review the applications of the Kinect technology in a variety of areas, including healthcare, education and performing arts, robotics, sign language recognition, retail services, workplace safety training, as well as 3D reconstructions. On the technology front, we provide an overview of the main features of both versions of the Kinect sensor together with the depth sensing technologies used, and review literatures on human motion recognition techniques used in Kinect applications. We provide a classification of motion recognition techniques to highlight the different approaches used in human motion recognition. Furthermore, we compile a list of publicly available Kinect datasets. These datasets are valuable resources for researchers to investigate better methods for human motion recognition and lower-level computer vision tasks such as segmentation, object detection and human pose estimation

    Analysis of the hands in egocentric vision: A survey

    Full text link
    Egocentric vision (a.k.a. first-person vision - FPV) applications have thrived over the past few years, thanks to the availability of affordable wearable cameras and large annotated datasets. The position of the wearable camera (usually mounted on the head) allows recording exactly what the camera wearers have in front of them, in particular hands and manipulated objects. This intrinsic advantage enables the study of the hands from multiple perspectives: localizing hands and their parts within the images; understanding what actions and activities the hands are involved in; and developing human-computer interfaces that rely on hand gestures. In this survey, we review the literature that focuses on the hands using egocentric vision, categorizing the existing approaches into: localization (where are the hands or parts of them?); interpretation (what are the hands doing?); and application (e.g., systems that used egocentric hand cues for solving a specific problem). Moreover, a list of the most prominent datasets with hand-based annotations is provided
    • …
    corecore