297,727 research outputs found
3D Object Class Detection in the Wild
Object class detection has been a synonym for 2D bounding box localization
for the longest time, fueled by the success of powerful statistical learning
techniques, combined with robust image representations. Only recently, there
has been a growing interest in revisiting the promise of computer vision from
the early days: to precisely delineate the contents of a visual scene, object
by object, in 3D. In this paper, we draw from recent advances in object
detection and 2D-3D object lifting in order to design an object class detector
that is particularly tailored towards 3D object class detection. Our 3D object
class detection method consists of several stages gradually enriching the
object detection output with object viewpoint, keypoints and 3D shape
estimates. Following careful design, in each stage it constantly improves the
performance and achieves state-ofthe-art performance in simultaneous 2D
bounding box and viewpoint estimation on the challenging Pascal3D+ dataset
PIXOR: Real-time 3D Object Detection from Point Clouds
We address the problem of real-time 3D object detection from point clouds in
the context of autonomous driving. Computation speed is critical as detection
is a necessary component for safety. Existing approaches are, however,
expensive in computation due to high dimensionality of point clouds. We utilize
the 3D data more efficiently by representing the scene from the Bird's Eye View
(BEV), and propose PIXOR, a proposal-free, single-stage detector that outputs
oriented 3D object estimates decoded from pixel-wise neural network
predictions. The input representation, network architecture, and model
optimization are especially designed to balance high accuracy and real-time
efficiency. We validate PIXOR on two datasets: the KITTI BEV object detection
benchmark, and a large-scale 3D vehicle detection benchmark. In both datasets
we show that the proposed detector surpasses other state-of-the-art methods
notably in terms of Average Precision (AP), while still runs at >28 FPS.Comment: Update of CVPR2018 paper: correct timing, fix typos, add
acknowledgemen
- …
