614,717 research outputs found

    Data acquisition electronics and reconstruction software for directional detection of Dark Matter with MIMAC

    Full text link
    Directional detection of galactic Dark Matter requires 3D reconstruction of low energy nuclear recoils tracks. A dedicated acquisition electronics with auto triggering feature and a real time track reconstruction software have been developed within the framework of the MIMAC project of detector. This auto-triggered acquisition electronic uses embedded processing to reduce data transfer to its useful part only, i.e. decoded coordinates of hit tracks and corresponding energy measurements. An acquisition software with on-line monitoring and 3D track reconstruction is also presented.Comment: 17 pages, 12 figure

    Dynamic 3D Network Data Visualization

    Get PDF
    Monitoring network traffic has always been an arduous and tedious task because of the complexity and sheer volume of network data that is being consistently generated. In addition, network growth and new technologies are rapidly increasing these levels of complexity and volume. An effective technique in understanding and managing a large dataset, such as network traffic, is data visualization. There are several tools that attempt to turn network traffic into visual stimuli. Many of these do so in 2D space and those that are 3D lack the ability to display network patterns effectively. Existing 3D network visualization tools lack user interaction, dynamic generation, and intuitiveness. This project proposes a user-friendly 3D network visualization application that creates both dynamic and interactive visuals. This application was built using the Bablyon.js graphics framework and uses anonymized data collected from a campus network

    Two-Stream RNN/CNN for Action Recognition in 3D Videos

    Full text link
    The recognition of actions from video sequences has many applications in health monitoring, assisted living, surveillance, and smart homes. Despite advances in sensing, in particular related to 3D video, the methodologies to process the data are still subject to research. We demonstrate superior results by a system which combines recurrent neural networks with convolutional neural networks in a voting approach. The gated-recurrent-unit-based neural networks are particularly well-suited to distinguish actions based on long-term information from optical tracking data; the 3D-CNNs focus more on detailed, recent information from video data. The resulting features are merged in an SVM which then classifies the movement. In this architecture, our method improves recognition rates of state-of-the-art methods by 14% on standard data sets.Comment: Published in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
    corecore