614,717 research outputs found
Data acquisition electronics and reconstruction software for directional detection of Dark Matter with MIMAC
Directional detection of galactic Dark Matter requires 3D reconstruction of
low energy nuclear recoils tracks. A dedicated acquisition electronics with
auto triggering feature and a real time track reconstruction software have been
developed within the framework of the MIMAC project of detector. This
auto-triggered acquisition electronic uses embedded processing to reduce data
transfer to its useful part only, i.e. decoded coordinates of hit tracks and
corresponding energy measurements. An acquisition software with on-line
monitoring and 3D track reconstruction is also presented.Comment: 17 pages, 12 figure
Dynamic 3D Network Data Visualization
Monitoring network traffic has always been an arduous and tedious task because of the complexity and sheer volume of network data that is being consistently generated. In addition, network growth and new technologies are rapidly increasing these levels of complexity and volume. An effective technique in understanding and managing a large dataset, such as network traffic, is data visualization. There are several tools that attempt to turn network traffic into visual stimuli. Many of these do so in 2D space and those that are 3D lack the ability to display network patterns effectively. Existing 3D network visualization tools lack user interaction, dynamic generation, and intuitiveness. This project proposes a user-friendly 3D network visualization application that creates both dynamic and interactive visuals. This application was built using the Bablyon.js graphics framework and uses anonymized data collected from a campus network
Two-Stream RNN/CNN for Action Recognition in 3D Videos
The recognition of actions from video sequences has many applications in
health monitoring, assisted living, surveillance, and smart homes. Despite
advances in sensing, in particular related to 3D video, the methodologies to
process the data are still subject to research. We demonstrate superior results
by a system which combines recurrent neural networks with convolutional neural
networks in a voting approach. The gated-recurrent-unit-based neural networks
are particularly well-suited to distinguish actions based on long-term
information from optical tracking data; the 3D-CNNs focus more on detailed,
recent information from video data. The resulting features are merged in an SVM
which then classifies the movement. In this architecture, our method improves
recognition rates of state-of-the-art methods by 14% on standard data sets.Comment: Published in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS
- …
