862,248 research outputs found

    Gesture based human-computer interface for 3D design

    Get PDF
    modeling are amongst the most important fields of interest in current computer vision research. However, traditional hand recognition systems can only operate in constrained environments using coloured gloves or static backgrounds and do not allow for 3D object manipulation. The goal of this research is to develop real-time camera based solutions to control 3D modeling applications using natural hand gestures

    Component-wise modeling of articulated objects

    Get PDF
    We introduce a novel framework for modeling articulated objects based on the aspects of their components. By decomposing the object into components, we divide the problem in smaller modeling tasks. After obtaining 3D models for each component aspect by employing a shape deformation paradigm, we merge them together, forming the object components. The final model is obtained by assembling the components using an optimization scheme which fits the respective 3D models to the corresponding apparent contours in a reference pose. The results suggest that our approach can produce realistic 3D models of articulated objects in reasonable time

    New Interactive Solar Flare Modeling and Advanced Radio Diagnostics Tools

    Full text link
    The coming years will see routine use of solar data of unprecedented spatial and spectral resolution, time cadence, and completeness in the wavelength domain. To capitalize on the soon to be available radio facilities such as the expanded OVSA, SSRT and FASR, and the challenges they present in the visualization and synthesis of the multi-frequency datasets, we propose that realistic, sophisticated 3D active region and flare modeling is timely now and will be a forefront of coronal studies over the coming years. Here we summarize our 3D modeling efforts, aimed at forward fitting of imaging spectroscopy data, and describe currently available 3D modeling tools. We also discuss plans for future generalization of our modeling tools.Comment: 4 pages; IAU Symposium # 274 "Advances in Plasma Astrophysics"; typo remove

    Learning to Group and Label Fine-Grained Shape Components

    Full text link
    A majority of stock 3D models in modern shape repositories are assembled with many fine-grained components. The main cause of such data form is the component-wise modeling process widely practiced by human modelers. These modeling components thus inherently reflect some function-based shape decomposition the artist had in mind during modeling. On the other hand, modeling components represent an over-segmentation since a functional part is usually modeled as a multi-component assembly. Based on these observations, we advocate that labeled segmentation of stock 3D models should not overlook the modeling components and propose a learning solution to grouping and labeling of the fine-grained components. However, directly characterizing the shape of individual components for the purpose of labeling is unreliable, since they can be arbitrarily tiny and semantically meaningless. We propose to generate part hypotheses from the components based on a hierarchical grouping strategy, and perform labeling on those part groups instead of directly on the components. Part hypotheses are mid-level elements which are more probable to carry semantic information. A multiscale 3D convolutional neural network is trained to extract context-aware features for the hypotheses. To accomplish a labeled segmentation of the whole shape, we formulate higher-order conditional random fields (CRFs) to infer an optimal label assignment for all components. Extensive experiments demonstrate that our method achieves significantly robust labeling results on raw 3D models from public shape repositories. Our work also contributes the first benchmark for component-wise labeling.Comment: Accepted to SIGGRAPH Asia 2018. Corresponding Author: Kai Xu ([email protected]

    Real-time Spatial Detection and Tracking of Resources in a Construction Environment

    Get PDF
    Construction accidents with heavy equipment and bad decision making can be based on poor knowledge of the site environment and in both cases may lead to work interruptions and costly delays. Supporting the construction environment with real-time generated three-dimensional (3D) models can help preventing accidents as well as support management by modeling infrastructure assets in 3D. Such models can be integrated in the path planning of construction equipment operations for obstacle avoidance or in a 4D model that simulates construction processes. Detecting and guiding resources, such as personnel, machines and materials in and to the right place on time requires methods and technologies supplying information in real-time. This paper presents research in real-time 3D laser scanning and modeling using high range frame update rate scanning technology. Existing and emerging sensors and techniques in three-dimensional modeling are explained. The presented research successfully developed computational models and algorithms for the real-time detection, tracking, and three-dimensional modeling of static and dynamic construction resources, such as workforce, machines, equipment, and materials based on a 3D video range camera. In particular, the proposed algorithm for rapidly modeling three-dimensional scenes is explained. Laboratory and outdoor field experiments that were conducted to validate the algorithm’s performance and results are discussed

    DeepSketch2Face: A Deep Learning Based Sketching System for 3D Face and Caricature Modeling

    Get PDF
    Face modeling has been paid much attention in the field of visual computing. There exist many scenarios, including cartoon characters, avatars for social media, 3D face caricatures as well as face-related art and design, where low-cost interactive face modeling is a popular approach especially among amateur users. In this paper, we propose a deep learning based sketching system for 3D face and caricature modeling. This system has a labor-efficient sketching interface, that allows the user to draw freehand imprecise yet expressive 2D lines representing the contours of facial features. A novel CNN based deep regression network is designed for inferring 3D face models from 2D sketches. Our network fuses both CNN and shape based features of the input sketch, and has two independent branches of fully connected layers generating independent subsets of coefficients for a bilinear face representation. Our system also supports gesture based interactions for users to further manipulate initial face models. Both user studies and numerical results indicate that our sketching system can help users create face models quickly and effectively. A significantly expanded face database with diverse identities, expressions and levels of exaggeration is constructed to promote further research and evaluation of face modeling techniques.Comment: 12 pages, 16 figures, to appear in SIGGRAPH 201

    3D simulation of complex shading affecting PV systems taking benefit from the power of graphics cards developed for the video game industry

    Get PDF
    Shading reduces the power output of a photovoltaic (PV) system. The design engineering of PV systems requires modeling and evaluating shading losses. Some PV systems are affected by complex shading scenes whose resulting PV energy losses are very difficult to evaluate with current modeling tools. Several specialized PV design and simulation software include the possibility to evaluate shading losses. They generally possess a Graphical User Interface (GUI) through which the user can draw a 3D shading scene, and then evaluate its corresponding PV energy losses. The complexity of the objects that these tools can handle is relatively limited. We have created a software solution, 3DPV, which allows evaluating the energy losses induced by complex 3D scenes on PV generators. The 3D objects can be imported from specialized 3D modeling software or from a 3D object library. The shadows cast by this 3D scene on the PV generator are then directly evaluated from the Graphics Processing Unit (GPU). Thanks to the recent development of GPUs for the video game industry, the shadows can be evaluated with a very high spatial resolution that reaches well beyond the PV cell level, in very short calculation times. A PV simulation model then translates the geometrical shading into PV energy output losses. 3DPV has been implemented using WebGL, which allows it to run directly from a Web browser, without requiring any local installation from the user. This also allows taken full benefits from the information already available from Internet, such as the 3D object libraries. This contribution describes, step by step, the method that allows 3DPV to evaluate the PV energy losses caused by complex shading. We then illustrate the results of this methodology to several application cases that are encountered in the world of PV systems design.Comment: 5 page, 9 figures, conference proceedings, 29th European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam, 201
    corecore