4 research outputs found

    Cascaded Pyramid Network for 3D Human Pose Estimation Challenge

    Full text link
    Over the past decade, there has been a growing interest in human pose estimation. Although much work has been done on 2D pose estimation, 3D pose estimation has still been relatively studied less. In this paper, we propose a top-bottom based two-stage 3D estimation framework. GloabalNet and RefineNet in our 2D pose estimation process enable us to find occluded or invisible 2D joints while 2D-to-3D pose estimator composed of residual blocks is used to lift 2D joints to 3D joints effectively. The proposed method achieves promising results with mean per joint position error at 42.39 on the validation dataset on `3D Human Pose Estimation within the ECCV 2018 PoseTrack Challenge.'Comment: Accepted to ECCV Workshop 201

    Weakly-Supervised Discovery of Geometry-Aware Representation for 3D Human Pose Estimation

    Full text link
    Recent studies have shown remarkable advances in 3D human pose estimation from monocular images, with the help of large-scale in-door 3D datasets and sophisticated network architectures. However, the generalizability to different environments remains an elusive goal. In this work, we propose a geometry-aware 3D representation for the human pose to address this limitation by using multiple views in a simple auto-encoder model at the training stage and only 2D keypoint information as supervision. A view synthesis framework is proposed to learn the shared 3D representation between viewpoints with synthesizing the human pose from one viewpoint to the other one. Instead of performing a direct transfer in the raw image-level, we propose a skeleton-based encoder-decoder mechanism to distil only pose-related representation in the latent space. A learning-based representation consistency constraint is further introduced to facilitate the robustness of latent 3D representation. Since the learnt representation encodes 3D geometry information, mapping it to 3D pose will be much easier than conventional frameworks that use an image or 2D coordinates as the input of 3D pose estimator. We demonstrate our approach on the task of 3D human pose estimation. Comprehensive experiments on three popular benchmarks show that our model can significantly improve the performance of state-of-the-art methods with simply injecting the representation as a robust 3D prior.Comment: Accepted as a CVPR 2019 oral paper. Project page: https://kwanyeelin.github.io

    Interaction Relational Network for Mutual Action Recognition

    Full text link
    Person-person mutual action recognition (also referred to as interaction recognition) is an important research branch of human activity analysis. Current solutions in the field -- mainly dominated by CNNs, GCNs and LSTMs -- often consist of complicated architectures and mechanisms to embed the relationships between the two persons on the architecture itself, to ensure the interaction patterns can be properly learned. Our main contribution with this work is by proposing a simpler yet very powerful architecture, named Interaction Relational Network, which utilizes minimal prior knowledge about the structure of the human body. We drive the network to identify by itself how to relate the body parts from the individuals interacting. In order to better represent the interaction, we define two different relationships, leading to specialized architectures and models for each. These multiple relationship models will then be fused into a single and special architecture, in order to leverage both streams of information for further enhancing the relational reasoning capability. Furthermore we define important structured pair-wise operations to extract meaningful extra information from each pair of joints -- distance and motion. Ultimately, with the coupling of an LSTM, our IRN is capable of paramount sequential relational reasoning. These important extensions we made to our network can also be valuable to other problems that require sophisticated relational reasoning. Our solution is able to achieve state-of-the-art performance on the traditional interaction recognition datasets SBU and UT, and also on the mutual actions from the large-scale dataset NTU RGB+D. Furthermore, it obtains competitive performance in the NTU RGB+D 120 dataset interactions subset.Comment: 12 pages, 6 figures, to be published in IEEE TM

    PoseNet3D: Learning Temporally Consistent 3D Human Pose via Knowledge Distillation

    Full text link
    Recovering 3D human pose from 2D joints is a highly unconstrained problem. We propose a novel neural network framework, PoseNet3D, that takes 2D joints as input and outputs 3D skeletons and SMPL body model parameters. By casting our learning approach in a student-teacher framework, we avoid using any 3D data such as paired/unpaired 3D data, motion capture sequences, depth images or multi-view images during training. We first train a teacher network that outputs 3D skeletons, using only 2D poses for training. The teacher network distills its knowledge to a student network that predicts 3D pose in SMPL representation. Finally, both the teacher and the student networks are jointly fine-tuned in an end-to-end manner using temporal, self-consistency and adversarial losses, improving the accuracy of each individual network. Results on Human3.6M dataset for 3D human pose estimation demonstrate that our approach reduces the 3D joint prediction error by 18% compared to previous unsupervised methods. Qualitative results on in-the-wild datasets show that the recovered 3D poses and meshes are natural, realistic, and flow smoothly over consecutive frames.Comment: Accepted as Oral in 3DV 2020; supplementary material included; added results on 3DPW dataset in revisio
    corecore