1,783 research outputs found

    Recognising the Clothing Categories from Free-Configuration Using Gaussian-Process-Based Interactive Perception

    Get PDF
    In this paper, we propose a Gaussian Process- based interactive perception approach for recognising highly- wrinkled clothes. We have integrated this recognition method within a clothes sorting pipeline for the pre-washing stage of an autonomous laundering process. Our approach differs from reported clothing manipulation approaches by allowing the robot to update its perception confidence via numerous interactions with the garments. The classifiers predominantly reported in clothing perception (e.g. SVM, Random Forest) studies do not provide true classification probabilities, due to their inherent structure. In contrast, probabilistic classifiers (of which the Gaussian Process is a popular example) are able to provide predictive probabilities. In our approach, we employ a multi-class Gaussian Process classification using the Laplace approximation for posterior inference and optimising hyper-parameters via marginal likelihood maximisation. Our experimental results show that our approach is able to recognise unknown garments from highly-occluded and wrinkled con- figurations and demonstrates a substantial improvement over non-interactive perception approaches

    Data-Driven Grasp Synthesis - A Survey

    Full text link
    We review the work on data-driven grasp synthesis and the methodologies for sampling and ranking candidate grasps. We divide the approaches into three groups based on whether they synthesize grasps for known, familiar or unknown objects. This structure allows us to identify common object representations and perceptual processes that facilitate the employed data-driven grasp synthesis technique. In the case of known objects, we concentrate on the approaches that are based on object recognition and pose estimation. In the case of familiar objects, the techniques use some form of a similarity matching to a set of previously encountered objects. Finally for the approaches dealing with unknown objects, the core part is the extraction of specific features that are indicative of good grasps. Our survey provides an overview of the different methodologies and discusses open problems in the area of robot grasping. We also draw a parallel to the classical approaches that rely on analytic formulations.Comment: 20 pages, 30 Figures, submitted to IEEE Transactions on Robotic

    Model-Free 3D Shape Control of Deformable Objects Using Novel Features Based on Modal Analysis

    Full text link
    Shape control of deformable objects is a challenging and important robotic problem. This paper proposes a model-free controller using novel 3D global deformation features based on modal analysis. Unlike most existing controllers using geometric features, our controller employs a physically-based deformation feature by decoupling 3D global deformation into low-frequency mode shapes. Although modal analysis is widely adopted in computer vision and simulation, it has not been used in robotic deformation control. We develop a new model-free framework for modal-based deformation control under robot manipulation. Physical interpretation of mode shapes enables us to formulate an analytical deformation Jacobian matrix mapping the robot manipulation onto changes of the modal features. In the Jacobian matrix, unknown geometry and physical properties of the object are treated as low-dimensional modal parameters which can be used to linearly parameterize the closed-loop system. Thus, an adaptive controller with proven stability can be designed to deform the object while online estimating the modal parameters. Simulations and experiments are conducted using linear, planar, and solid objects under different settings. The results not only confirm the superior performance of our controller but also demonstrate its advantages over the baseline method.Comment: Accepted by the IEEE Transactions on Robotics. The paper will appear in the IEEE Transactions on Robotics. IEEE copyrigh
    • …
    corecore