221 research outputs found

    Two-dimensional beam tracing from visibility diagrams for real-time acoustic rendering

    Get PDF
    We present an extension of the fast beam-tracing method presented in the work of Antonacci et al. (2008) for the simulation of acoustic propagation in reverberant environments that accounts for diffraction and diffusion. More specifically, we show how visibility maps are suitable for modeling propagation phenomena more complex than specular reflections. We also show how the beam-tree lookup for path tracing can be entirely performed on visibility maps as well. We then contextualize such method to the two different cases of channel (point-to-point) rendering using a headset, and the rendering of a wave field based on arrays of speakers. Finally, we provide some experimental results and comparisons with real data to show the effectiveness and the accuracy of the approach in simulating the soundfield in an environment

    Spatial Sound Rendering – A Survey

    Get PDF
    Simulating propagation of sound and audio rendering can improve the sense of realism and the immersion both in complex acoustic environments and dynamic virtual scenes. In studies of sound auralization, the focus has always been on room acoustics modeling, but most of the same methods are also applicable in the construction of virtual environments such as those developed to facilitate computer gaming, cognitive research, and simulated training scenarios. This paper is a review of state-of-the-art techniques that are based on acoustic principles that apply not only to real rooms but also in 3D virtual environments. The paper also highlights the need to expand the field of immersive sound in a web based browsing environment, because, despite the interest and many benefits, few developments seem to have taken place within this context. Moreover, the paper includes a list of the most effective algorithms used for modelling spatial sound propagation and reports their advantages and disadvantages. Finally, the paper emphasizes in the evaluation of these proposed works

    Efficient Geometry-Based Sound Reverberation

    Get PDF
    Publication in the conference proceedings of EUSIPCO, Toulouse, France, 200

    Interactive Sound Propagation for Massive Multi-user and Dynamic Virtual Environments

    Get PDF
    Hearing is an important sense and it is known that rendering sound effects can enhance the level of immersion in virtual environments. Modeling sound waves is a complex problem, requiring vast computing resources to solve accurately. Prior methods are restricted to static scenes or limited acoustic effects. In this thesis, we present methods to improve the quality and performance of interactive geometric sound propagation in dynamic scenes and precomputation algorithms for acoustic propagation in enormous multi-user virtual environments. We present a method for finding edge diffraction propagation paths on arbitrary 3D scenes for dynamic sources and receivers. Using this algorithm, we present a unified framework for interactive simulation of specular reflections, diffuse reflections, diffraction scattering, and reverberation effects. We also define a guidance algorithm for ray tracing that responds to dynamic environments and reorders queries to minimize simulation time. Our approach works well on modern GPUs and can achieve more than an order of magnitude performance improvement over prior methods. Modern multi-user virtual environments support many types of client devices, and current phones and mobile devices may lack the resources to run acoustic simulations. To provide such devices the benefits of sound simulation, we have developed a precomputation algorithm that efficiently computes and stores acoustic data on a server in the cloud. Using novel algorithms, the server can render enhanced spatial audio in scenes spanning several square kilometers for hundreds of clients in realtime. Our method provides the benefits of immersive audio to collaborative telephony, video games, and multi-user virtual environments.Doctor of Philosoph

    Scattering Delay Network Simulator of Coupled Volume Acoustics

    Get PDF
    IEEEArtificial reverberators provide a computationally viable alternative to full-scale room acoustics simulation methods for deployment in interactive, immersive systems. Scattering delay network (SDN) is an artificial reverberator that allows direct parametric control over the geometry of a simulated cuboid enclosure as well as the directional characteristics of the simulated sound sources and microphones. This paper extends the concept of SDN reverberators to multiple enclosures coupled via an aperture. The extension allows independent control of the acoustical properties of the coupled enclosures and the size of the connecting aperture. The transfer function of the coupled-volume SDN system is derived. The effectiveness of the proposed method is evaluated in terms of rendered energy decay curves in comparison to full-scale ray-tracing models and scale model measurements

    Perceptually Driven Interactive Sound Propagation for Virtual Environments

    Get PDF
    Sound simulation and rendering can significantly augment a user‘s sense of presence in virtual environments. Many techniques for sound propagation have been proposed that predict the behavior of sound as it interacts with the environment and is received by the user. At a broad level, the propagation algorithms can be classified into reverberation filters, geometric methods, and wave-based methods. In practice, heuristic methods based on reverberation filters are simple to implement and have a low computational overhead, while wave-based algorithms are limited to static scenes and involve extensive precomputation. However, relatively little work has been done on the psychoacoustic characterization of different propagation algorithms, and evaluating the relationship between scientific accuracy and perceptual benefits.In this dissertation, we present perceptual evaluations of sound propagation methods and their ability to model complex acoustic effects for virtual environments. Our results indicate that scientifically accurate methods for reverberation and diffraction do result in increased perceptual differentiation. Based on these evaluations, we present two novel hybrid sound propagation methods that combine the accuracy of wave-based methods with the speed of geometric methods for interactive sound propagation in dynamic scenes.Our first algorithm couples modal sound synthesis with geometric sound propagation using wave-based sound radiation to perform mode-aware sound propagation. We introduce diffraction kernels of rigid objects,which encapsulate the sound diffraction behaviors of individual objects in the free space and are then used to simulate plausible diffraction effects using an interactive path tracing algorithm. Finally, we present a novel perceptual driven metric that can be used to accelerate the computation of late reverberation to enable plausible simulation of reverberation with a low runtime overhead. We highlight the benefits of our novel propagation algorithms in different scenarios.Doctor of Philosoph

    Spherical harmonics based generalized image source method for simulating room acoustics

    Get PDF
    Allen and Berkley's image source method (ISM) is proven to be a very useful and popular technique for simulating the acoustic room transfer function (RTF) in reverberant rooms. It is based on the assumption that the source and receiver of interest are both omnidirectional. With the inherent directional nature of practical loudspeakers and the increasing use of directional microphones, the above assumption is often invalid. The main objective of this paper is to generalize the frequency domain ISM in the spherical harmonics domain such that it could simulate the RTF between practical transducers with higher-order directivity. This is achieved by decomposing transducer directivity patterns in terms of spherical harmonics and by applying the concept of image sources in spherical harmonics based propagation patterns. Therefore, from now on, any transducer can be modeled in the spherical harmonics domain with a realistic directivity pattern and incorporated with the proposed method to simulate room acoustics more accurately. We show that the proposed generalization also has an alternate use in terms of enabling RTF simulations for moving point-transducers inside pre-defined source and receiver regions.Thanks to Australian Research Council Linkage Grant funding scheme (Project No. LP160100379)

    Portal-based sound propagation for first-person computer games

    Get PDF
    First-person computer games are a popular modern video game genre. A new method is proposed, the Directional Propagation Cache, that takes adavntage of the very common portal spatial subdivision method to accelerate environmental acoustics simulation for first-person games, by caching sound propagation information between portals

    Realistic Visualization of Animated Virtual Cloth

    Get PDF
    Photo-realistic rendering of real-world objects is a broad research area with applications in various different areas, such as computer generated films, entertainment, e-commerce and so on. Within photo-realistic rendering, the rendering of cloth is a subarea which involves many important aspects, ranging from material surface reflection properties and macroscopic self-shadowing to animation sequence generation and compression. In this thesis, besides an introduction to the topic plus a broad overview of related work, different methods to handle major aspects of cloth rendering are described. Material surface reflection properties play an important part to reproduce the look & feel of materials, that is, to identify a material only by looking at it. The BTF (bidirectional texture function), as a function of viewing and illumination direction, is an appropriate representation of reflection properties. It captures effects caused by the mesostructure of a surface, like roughness, self-shadowing, occlusion, inter-reflections, subsurface scattering and color bleeding. Unfortunately a BTF data set of a material consists of hundreds to thousands of images, which exceeds current memory size of personal computers by far. This work describes the first usable method to efficiently compress and decompress a BTF data for rendering at interactive to real-time frame rates. It is based on PCA (principal component analysis) of the BTF data set. While preserving the important visual aspects of the BTF, the achieved compression rates allow the storage of several different data sets in main memory of consumer hardware, while maintaining a high rendering quality. Correct handling of complex illumination conditions plays another key role for the realistic appearance of cloth. Therefore, an upgrade of the BTF compression and rendering algorithm is described, which allows the support of distant direct HDR (high-dynamic-range) illumination stored in environment maps. To further enhance the appearance, macroscopic self-shadowing has to be taken into account. For the visualization of folds and the life-like 3D impression, these kind of shadows are absolutely necessary. This work describes two methods to compute these shadows. The first is seamlessly integrated into the illumination part of the rendering algorithm and optimized for static meshes. Furthermore, another method is proposed, which allows the handling of dynamic objects. It uses hardware-accelerated occlusion queries for the visibility determination. In contrast to other algorithms, the presented algorithm, despite its simplicity, is fast and produces less artifacts than other methods. As a plus, it incorporates changeable distant direct high-dynamic-range illumination. The human perception system is the main target of any computer graphics application and can also be treated as part of the rendering pipeline. Therefore, optimization of the rendering itself can be achieved by analyzing human perception of certain visual aspects in the image. As a part of this thesis, an experiment is introduced that evaluates human shadow perception to speedup shadow rendering and provides optimization approaches. Another subarea of cloth visualization in computer graphics is the animation of the cloth and avatars for presentations. This work also describes two new methods for automatic generation and compression of animation sequences. The first method to generate completely new, customizable animation sequences, is based on the concept of finding similarities in animation frames of a given basis sequence. Identifying these similarities allows jumps within the basis sequence to generate endless new sequences. Transmission of any animated 3D data over bandwidth-limited channels, like extended networks or to less powerful clients requires efficient compression schemes. The second method included in this thesis in the animation field is a geometry data compression scheme. Similar to the BTF compression, it uses PCA in combination with clustering algorithms to segment similar moving parts of the animated objects to achieve high compression rates in combination with a very exact reconstruction quality.Realistische Visualisierung von animierter virtueller Kleidung Das photorealistisches Rendering realer Gegenstände ist ein weites Forschungsfeld und hat Anwendungen in vielen Bereichen. Dazu zählen Computer generierte Filme (CGI), die Unterhaltungsindustrie und E-Commerce. Innerhalb dieses Forschungsbereiches ist das Rendern von photorealistischer Kleidung ein wichtiger Bestandteil. Hier reichen die wichtigen Aspekte, die es zu berücksichtigen gilt, von optischen Materialeigenschaften über makroskopische Selbstabschattung bis zur Animationsgenerierung und -kompression. In dieser Arbeit wird, neben der Einführung in das Thema, ein weiter Überblick über ähnlich gelagerte Arbeiten gegeben. Der Schwerpunkt der Arbeit liegt auf den wichtigen Aspekten der virtuellen Kleidungsvisualisierung, die oben beschrieben wurden. Die optischen Reflektionseigenschaften von Materialoberflächen spielen eine wichtige Rolle, um das so genannte look & feel von Materialien zu charakterisieren. Hierbei kann ein Material vom Nutzer identifiziert werden, ohne dass er es direkt anfassen muss. Die BTF (bidirektionale Texturfunktion)ist eine Funktion die abhängig von der Blick- und Beleuchtungsrichtung ist. Daher ist sie eine angemessene Repräsentation von Reflektionseigenschaften. Sie enthält Effekte wie Rauheit, Selbstabschattungen, Verdeckungen, Interreflektionen, Streuung und Farbbluten, die durch die Mesostruktur der Oberfläche hervorgerufen werden. Leider besteht ein BTF Datensatz eines Materials aus hunderten oder tausenden von Bildern und sprengt damit herkömmliche Hauptspeicher in Computern bei weitem. Diese Arbeit beschreibt die erste praktikable Methode, um BTF Daten effizient zu komprimieren, zu speichern und für Echtzeitanwendungen zum Visualisieren wieder zu dekomprimieren. Die Methode basiert auf der Principal Component Analysis (PCA), die Daten nach Signifikanz ordnet. Während die PCA die entscheidenen visuellen Aspekte der BTF erhält, können mit ihrer Hilfe Kompressionsraten erzielt werden, die es erlauben mehrere BTF Materialien im Hauptspeicher eines Consumer PC zu verwalten. Dies erlaubt ein High-Quality Rendering. Korrektes Verwenden von komplexen Beleuchtungssituationen spielt eine weitere, wichtige Rolle, um Kleidung realistisch erscheinen zu lassen. Daher wird zudem eine Erweiterung des BTF Kompressions- und Renderingalgorithmuses erläutert, die den Einsatz von High-Dynamic Range (HDR) Beleuchtung erlaubt, die in environment maps gespeichert wird. Um die realistische Erscheinung der Kleidung weiter zu unterstützen, muss die makroskopische Selbstabschattung integriert werden. Für die Visualisierung von Falten und den lebensechten 3D Eindruck ist diese Art von Schatten absolut notwendig. Diese Arbeit beschreibt daher auch zwei Methoden, diese Schatten schnell und effizient zu berechnen. Die erste ist nahtlos in den Beleuchtungspart des obigen BTF Renderingalgorithmuses integriert und für statische Geometrien optimiert. Die zweite Methode behandelt dynamische Objekte. Dazu werden hardwarebeschleunigte Occlusion Queries verwendet, um die Sichtbarkeitsberechnung durchzuführen. Diese Methode ist einerseits simpel und leicht zu implementieren, anderseits ist sie schnell und produziert weniger Artefakte, als vergleichbare Methoden. Zusätzlich ist die Verwendung von veränderbarer, entfernter HDR Beleuchtung integriert. Das menschliche Wahrnehmungssystem ist das eigentliche Ziel jeglicher Anwendung in der Computergrafik und kann daher selbst als Teil einer erweiterten Rendering Pipeline gesehen werden. Daher kann das Rendering selbst optimiert werden, wenn man die menschliche Wahrnehmung verschiedener visueller Aspekte der berechneten Bilder analysiert. Teil der vorliegenden Arbeit ist die Beschreibung eines Experimentes, das menschliche Schattenwahrnehmung untersucht, um das Rendern der Schatten zu beschleunigen. Ein weiteres Teilgebiet der Kleidungsvisualisierung in der Computergrafik ist die Animation der Kleidung und von Avataren für Präsentationen. Diese Arbeit beschreibt zwei neue Methoden auf diesem Teilgebiet. Einmal ein Algorithmus, der für die automatische Generierung neuer Animationssequenzen verwendet werden kann und zum anderen einen Kompressionsalgorithmus für eben diese Sequenzen. Die automatische Generierung von völlig neuen, anpassbaren Animationen basiert auf dem Konzept der Ähnlichkeitssuche. Hierbei werden die einzelnen Schritte von gegebenen Basisanimationen auf Ähnlichkeiten hin untersucht, die zum Beispiel die Geschwindigkeiten einzelner Objektteile sein können. Die Identifizierung dieser Ähnlichkeiten erlaubt dann Sprünge innerhalb der Basissequenz, die dazu benutzt werden können, endlose, neue Sequenzen zu erzeugen. Die Übertragung von animierten 3D Daten über bandbreitenlimitierte Kanäle wie ausgedehnte Netzwerke, Mobilfunk oder zu sogenannten thin clients erfordert eine effiziente Komprimierung. Die zweite, in dieser Arbeit vorgestellte Methode, ist ein Kompressionsschema für Geometriedaten. Ähnlich wie bei der Kompression von BTF Daten wird die PCA in Verbindung mit Clustering benutzt, um die animierte Geometrie zu analysieren und in sich ähnlich bewegende Teile zu segmentieren. Diese erkannten Segmente lassen sich dann hoch komprimieren. Der Algorithmus arbeitet automatisch und erlaubt zudem eine sehr exakte Rekonstruktionsqualität nach der Dekomprimierung

    Higher-order Finite Difference Time Domain Algorithms for Room Acoustic Modelling

    Get PDF
    The acoustic qualities of indoor spaces are fundamental to the intelligibility of speech, the quality of musical performances, and perceived noise levels. Computationally heavy wave-based acoustic modelling algorithms have gained momentum in the field of room acoustic modelling, as ever-increasing computational power makes their use more feasible. Most notably the Finite Difference Time Domain (FDTD) method is often employed for rendering the low- and mid-frequency part of room impulse responses (RIRs). However, this algorithm has known disadvantages, most prominently dispersion error, which renders a large part of the simulated RIR invalid. This thesis is concerned with the implementation and analysis of higher-order FDTD stencils as a means to improve the current state-of-art FDTD methods that solve the room acoustic wave equation. A detailed analysis of dispersive properties, stability, and required grid spacing of current and higher-order stencils is presented, and has been verified using a GPU implementation of the different algorithms. It is argued that the 4th-order stencil gives the best result in terms of output quality versus computational effort. In addition, this thesis focusses on the derivation of absorbing boundaries for the 4th-order scheme, its stability analysis, and detailed analysis of absorptive properties compared to established boundary models for 2nd-order schemes. The newly proposed 4th-order scheme and its boundaries are tested in two case studies: a large shoebox model, in order to test the validity against a common benchmark and a complex acoustic space. For the latter study, impulse responses were measured in the National Centre for Early Music in York, UK, and computationally generated using the current state-of-the-art as well as the proposed 4th-order FDTD algorithm and boundaries. It is shown that the 4th-order stencil gives at least as good as, or better results than those achieved using the 2nd-order stencil, at lower computational costs
    corecore