30 research outputs found

    Spherical clustering of users navigating 360{\deg} content

    Full text link
    In Virtual Reality (VR) applications, understanding how users explore the omnidirectional content is important to optimize content creation, to develop user-centric services, or even to detect disorders in medical applications. Clustering users based on their common navigation patterns is a first direction to understand users behaviour. However, classical clustering techniques fail in identifying these common paths, since they are usually focused on minimizing a simple distance metric. In this paper, we argue that minimizing the distance metric does not necessarily guarantee to identify users that experience similar navigation path in the VR domain. Therefore, we propose a graph-based method to identify clusters of users who are attending the same portion of the spherical content over time. The proposed solution takes into account the spherical geometry of the content and aims at clustering users based on the actual overlap of displayed content among users. Our method is tested on real VR user navigation patterns. Results show that our solution leads to clusters in which at least 85% of the content displayed by one user is shared among the other users belonging to the same cluster.Comment: 5 pages, conference (Published in: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

    Data2MV - A user behaviour dataset for multi-view scenarios

    Get PDF
    The Data2MV dataset contains gaze fixation data obtained through experimental procedures from a total of 45 partic- ipants using an Intel RealSense F200 camera module and seven different video playlists. Each of the playlists had an approximate duration of 20 minutes and was viewed at least 17 times, with raw tracking data being recorded with a 0.05 second interval. The Data2MV dataset encompasses a total of 1.0 0 0.845 gaze fixations, gathered across a total of 128 exper- iments. It is also composed of 68.393 image frames, extracted from each of the 6 videos selected for these experiments, and an equal quantity of saliency maps, generated from aggregate fixation data. Software tools to obtain saliency maps and generate complementary plots are also provided as an open- source software package. The Data2MV dataset was publicly released to the research community on Mendeley Data and constitutes an important contribution to reduce the current scarcity of such data, particularly in immersive, multi-view streaming scenarios.info:eu-repo/semantics/publishedVersio

    Bridge the Gap Between VQA and Human Behavior on Omnidirectional Video: A Large-Scale Dataset and a Deep Learning Model

    Full text link
    Omnidirectional video enables spherical stimuli with the 360×180∘360 \times 180^ \circ viewing range. Meanwhile, only the viewport region of omnidirectional video can be seen by the observer through head movement (HM), and an even smaller region within the viewport can be clearly perceived through eye movement (EM). Thus, the subjective quality of omnidirectional video may be correlated with HM and EM of human behavior. To fill in the gap between subjective quality and human behavior, this paper proposes a large-scale visual quality assessment (VQA) dataset of omnidirectional video, called VQA-OV, which collects 60 reference sequences and 540 impaired sequences. Our VQA-OV dataset provides not only the subjective quality scores of sequences but also the HM and EM data of subjects. By mining our dataset, we find that the subjective quality of omnidirectional video is indeed related to HM and EM. Hence, we develop a deep learning model, which embeds HM and EM, for objective VQA on omnidirectional video. Experimental results show that our model significantly improves the state-of-the-art performance of VQA on omnidirectional video.Comment: Accepted by ACM MM 201

    Complexity measurement and characterization of 360-degree content

    Get PDF
    The appropriate characterization of the test material, used for subjective evaluation tests and for benchmarking image and video processing algorithms and quality metrics, can be crucial in order to perform comparative studies that provide useful insights. This paper focuses on the characterisation of 360-degree images. We discuss why it is important to take into account the geometry of the signal and the interactive nature of 360-degree content navigation, for a perceptual characterization of these signals. Particularly, we show that the computation of classical indicators of spatial complexity, commonly used for 2D images, might lead to different conclusions depending on the geometrical domain use
    corecore