2,175 research outputs found

    S wave velocity structure below central Mexico using high-resolution surface wave tomography

    Get PDF
    Shear wave velocity of the crust below central Mexico is estimated using surface wave dispersion measurements from regional earthquakes recorded on a dense, 500 km long linear seismic network. Vertical components of regional records from 90 well-located earthquakes were used to compute Rayleigh-wave group-velocity dispersion curves. A tomographic inversion, with high resolution in a zone close to the array, obtained for periods between 5 and 50 s reveals significant differences relative to a reference model, especially at larger periods (>30 s). A 2-D S wave velocity model is obtained from the inversion of local dispersion curves that were reconstructed from the tomographic solutions. The results show large differences, especially in the lower crust, among back-arc, volcanic arc, and fore-arc regions; they also show a well-resolved low-velocity zone just below the active part of the Trans Mexican Volcanic Belt (TMVB) suggesting the presence of a mantle wedge. Low densities in the back arc, inferred from the low shear wave velocities, can provide isostatic support for the TMVB

    Coordination of Mobile Mules via Facility Location Strategies

    Full text link
    In this paper, we study the problem of wireless sensor network (WSN) maintenance using mobile entities called mules. The mules are deployed in the area of the WSN in such a way that would minimize the time it takes them to reach a failed sensor and fix it. The mules must constantly optimize their collective deployment to account for occupied mules. The objective is to define the optimal deployment and task allocation strategy for the mules, so that the sensors' downtime and the mules' traveling distance are minimized. Our solutions are inspired by research in the field of computational geometry and the design of our algorithms is based on state of the art approximation algorithms for the classical problem of facility location. Our empirical results demonstrate how cooperation enhances the team's performance, and indicate that a combination of k-Median based deployment with closest-available task allocation provides the best results in terms of minimizing the sensors' downtime but is inefficient in terms of the mules' travel distance. A k-Centroid based deployment produces good results in both criteria.Comment: 12 pages, 6 figures, conferenc

    Quasi-two-dimensional complex plasma containing spherical particles and their binary agglomerates

    Get PDF
    A new type of quasi-two-dimensional complex plasma system was observed which consisted of monodisperse microspheres and their binary agglomerations (dimers). The particles and their dimers levitated in a plasma sheath at slightly different heights and formed two distinct sublayers. The sys- tem did not crystallize and may be characterized as disordered solid. The dimers were identified based on their characteristic appearance in defocused images, i.e., rotating interference fringe pat- terns. The in-plane and inter-plane particle separations exhibit nonmonotonic dependence on the discharge pressure which agrees well with theoretical predictions
    • 

    corecore