3 research outputs found

    Data Repository of Finite Element Models of Normal and Deformed Thoracolumbar Spine

    Full text link
    Adult spine deformity (ASD) is prevalent and leads to a sagittal misalignment in the vertebral column. Computational methods, including Finite Element (FE) Models, have emerged as valuable tools for investigating the causes and treatment of ASD through biomechanical simulations. However, the process of generating personalized FE models is often complex and time-consuming. To address this challenge, we present a repository of FE models with diverse spine morphologies that statistically represent real geometries from a cohort of patients. These models are generated using EOS images, which are utilized to reconstruct 3D surface spine models. Subsequently, a Statistical Shape Model (SSM) is constructed, enabling the adaptation of a FE hexahedral mesh template for both the bone and soft tissues of the spine through mesh morphing. The SSM deformation fields facilitate the personalization of the mean hexahedral FE model based on sagittal balance measurements. Ultimately, this new hexahedral SSM tool offers a means to generate a virtual cohort of 16807 thoracolumbar FE spine models, which are openly shared in a public repository

    Detection of osteoporosis in lumbar spine [L1-L4] trabecular bone: a review article

    Get PDF
    The human bones are categorized based on elemental micro architecture and porosity. The porosity of the inner trabecular bone is high that is 40-95% and the nature of the bone is soft and spongy where as the cortical bone is harder and is less porous that is 5 to 15%. Osteoporosis is a disease that normally affects women usually after their menopause. It largely causes mild bone fractures and further stages lead to the demise of an individual. This analysis is on the basis of bone mineral density (BMD) standards obtained through a variety of scientific methods experimented from different skeletal regions. The detection of osteoporosis in lumbar spine has been widely recognized as a promising way to frequent fractures. Therefore, premature analysis of osteoporosis will estimate the risk of the bone fracture which prevents life threats. This paper focuses on the advanced technology in imaging systems and fracture probability analysis of osteoporosis detection. The various segmentation techniques are explored to examine osteoporosis in particular region of the image and further significant attributes are extracted using different methods to classify normal and abnormal (osteoporotic) bones. The limitations of the reviewed papers are more in feature dimensions, lesser accuracy and expensive imaging modalities like computed tomography (CT), magnetic resonance imaging (MRI), and DEXA. To overcome these limitations it is suggested to have less feature dimensions, more accuracy and cost-effective imaging modality like X-ray. This is required to avoid bone fractures and to improve BMD with precision which further helps in the diagnosis of osteoporosis
    corecore