93 research outputs found

    Theory and design of uniform DFT, parallel, quadrature mirror filter banks

    Get PDF
    In this paper, the theory of uniform DFT, parallel, quadrature mirror filter (QMF) banks is developed. The QMF equations, i.e., equations that need to be satisfied for exact reconstruction of the input signal, are derived. The concept of decimated filters is introduced, and structures for both analysis and synthesis banks are derived using this concept. The QMF equations, as well as closed-form expressions for the synthesis filters needed for exact reconstruction of the input signalx(n), are also derived using this concept. In general, the reconstructed. signalhat{x}(n)suffers from three errors: aliasing, amplitude distortion, and phase distortion. Conditions for exact reconstruction (i.e., all three distortions are zero, andhat{x}(n)is equal to a delayed version ofx(n))of the input signal are derived in terms of the decimated filters. Aliasing distortion can always be completely canceled. Once aliasing is canceled, it is possible to completely eliminate amplitude distortion (if suitable IIR filters are employed) and completely eliminate phase distortion (if suitable FIR filters are employed). However, complete elimination of all three errors is possible only with some simple, pathalogical stable filter transfer functions. In general, once aliasing is canceled, the other distortions can be minimized rather than completely eliminated. Algorithms for this are presented. The properties of FIR filter banks are then investigated. Several aspects of IIR filter banks are also studied using the same framework

    Tree-structured complementary filter banks using all-pass sections

    Get PDF
    Tree-structured complementary filter banks are developed with transfer functions that are simultaneously all-pass complementary and power complementary. Using a formulation based on unitary transforms and all-pass functions, we obtain analysis and synthesis filter banks which are related through a transposition operation, such that the cascade of analysis and synthesis filter banks achieves an all-pass function. The simplest structure is obtained using a Hadamard transform, which is shown to correspond to a binary tree structure. Tree structures can be generated for a variety of other unitary transforms as well. In addition, given a tree-structured filter bank where the number of bands is a power of two, simple methods are developed to generate complementary filter banks with an arbitrary number of channels, which retain the transpose relationship between analysis and synthesis banks, and allow for any combination of bandwidths. The structural properties of the filter banks are illustrated with design examples, and multirate applications are outlined

    Cyclic LTI systems in digital signal processing

    Get PDF
    Cyclic signal processing refers to situations where all the time indices are interpreted modulo some integer L. In such cases, the frequency domain is defined as a uniform discrete grid (as in L-point DFT). This offers more freedom in theoretical as well as design aspects. While circular convolution has been the centerpiece of many algorithms in signal processing for decades, such freedom, especially from the viewpoint of linear system theory, has not been studied in the past. In this paper, we introduce the fundamentals of cyclic multirate systems and filter banks, presenting several important differences between the cyclic and noncyclic cases. Cyclic systems with allpass and paraunitary properties are studied. The paraunitary interpolation problem is introduced, and it is shown that the interpolation does not always succeed. State-space descriptions of cyclic LTI systems are introduced, and the notions of reachability and observability of state equations are revisited. It is shown that unlike in traditional linear systems, these two notions are not related to the system minimality in a simple way. Throughout the paper, a number of open problems are pointed out from the perspective of the signal processor as well as the system theorist

    Theory and design of M-channel maximally decimated quadrature mirror filters with arbitrary M, having the perfect-reconstruction property

    Get PDF
    Based on the concept of losslessness in digital filter structures, this paper derives a general class of maximally decimated M-channel quadrature mirror filter banks that lead to perfect reconstruction. The perfect-reconstruction property guarantees that the reconstructed signalhat{x} (n)is a delayed version of the input signal x (n), i.e.,hat{x} (n) = x (n - n_{0}). It is shown that such a property can be satisfied if the alias component matrix (AC matrix for short) is unitary on the unit circle of the z plane. The number of channels M is arbitrary, and when M is two, the results reduce to certain recently reported 2-channel perfect-reconstruction QMF structures. A procedure, based on recently reported FIR cascaded-lattice structures, is presented for optimal design of such FIR M-channel filter banks. Design examples are included

    Polyphase networks, block digital filtering, LPTV systems, and alias-free QMF banks: a unified approach based on pseudocirculants

    Get PDF
    The relationship between block digital filtering and quadrature mirror filter (QMF) banks is explored. Necessary and sufficient conditions for alias cancellation in QMF banks are expressed in terms of an associated matrix, derived from the polyphase components of the analysis and synthesis filters. These conditions, called the pseudocirculant conditions, make it possible to unite QMF banks with the framework of block digital filtering directly. Absence of amplitude distortion in an alias-free QMF bank translates into the 'losslessness' property of the pseudocirculant matrix involved

    Channelization for Multi-Standard Software-Defined Radio Base Stations

    Get PDF
    As the number of radio standards increase and spectrum resources come under more pressure, it becomes ever less efficient to reserve bands of spectrum for exclusive use by a single radio standard. Therefore, this work focuses on channelization structures compatible with spectrum sharing among multiple wireless standards and dynamic spectrum allocation in particular. A channelizer extracts independent communication channels from a wideband signal, and is one of the most computationally expensive components in a communications receiver. This work specifically focuses on non-uniform channelizers suitable for multi-standard Software-Defined Radio (SDR) base stations in general and public mobile radio base stations in particular. A comprehensive evaluation of non-uniform channelizers (existing and developed during the course of this work) shows that parallel and recombined variants of the Generalised Discrete Fourier Transform Modulated Filter Bank (GDFT-FB) represent the best trade-off between computational load and flexibility for dynamic spectrum allocation. Nevertheless, for base station applications (with many channels) very high filter orders may be required, making the channelizers difficult to physically implement. To mitigate this problem, multi-stage filtering techniques are applied to the GDFT-FB. It is shown that these multi-stage designs can significantly reduce the filter orders and number of operations required by the GDFT-FB. An alternative approach, applying frequency response masking techniques to the GDFT-FB prototype filter design, leads to even bigger reductions in the number of coefficients, but computational load is only reduced for oversampled configurations and then not as much as for the multi-stage designs. Both techniques render the implementation of GDFT-FB based non-uniform channelizers more practical. Finally, channelization solutions for some real-world spectrum sharing use cases are developed before some final physical implementation issues are considered

    One- and two-level filter-bank convolvers

    Get PDF
    In a recent paper, it was shown in detail that in the case of orthonormal and biorthogonal filter banks we can convolve two signals by directly convolving the subband signals and combining the results. In this paper, we further generalize the result. We also derive the statistical coding gain for the generalized subband convolver. As an application, we derive a novel low sensitivity structure for FIR filters from the convolution theorem. We define and derive a deterministic coding gain of the subband convolver over direct convolution for a fixed wordlength implementation. This gain serves as a figure of merit for the low sensitivity structure. Several numerical examples are included to demonstrate the usefulness of these ideas. By using the generalized polyphase representation, we show that the subband convolvers, linear periodically time varying systems, and digital block filtering can be viewed in a unified manner. Furthermore, the scheme called IFIR filtering is shown to be a special case of the convolver

    On board Processor and Processing Strategies for Next Generation Reconfigurable Satellite Payloads

    Get PDF
    Today, the increasing demand in higher data rates necessitates new methods as well as higher flexibility for satellite telecommunication payloads in order to address a variety of applications and customers. This paper presents one of these processing strategies that is applicable to today’s processing satellite payloads aiming to meet those demands. For this purpose, a two-tier filter bank is designed as part of a digital onboard processor, which first divides the spectrum at the output of the ADC into a number of sub-bands extracting all the stacked channels in the digital domain. Following the analysis section of the first tier of operations, the extracted channels go under a secondary channelisation process to obtain much finer granularity of 31.25 kHz or 50 kHz depending on the communication standard used for data transmission. The implementation of the channeliser was delivered on a bit-true simulation model and the input and the output of the channelisers were compared and evaluated both in the time and frequency domains

    Multirate digital filters, filter banks, polyphase networks, and applications: a tutorial

    Get PDF
    Multirate digital filters and filter banks find application in communications, speech processing, image compression, antenna systems, analog voice privacy systems, and in the digital audio industry. During the last several years there has been substantial progress in multirate system research. This includes design of decimation and interpolation filters, analysis/synthesis filter banks (also called quadrature mirror filters, or QMFJ, and the development of new sampling theorems. First, the basic concepts and building blocks in multirate digital signal processing (DSPJ, including the digital polyphase representation, are reviewed. Next, recent progress as reported by several authors in this area is discussed. Several applications are described, including the following: subband coding of waveforms, voice privacy systems, integral and fractional sampling rate conversion (such as in digital audio), digital crossover networks, and multirate coding of narrow-band filter coefficients. The M-band QMF bank is discussed in considerable detail, including an analysis of various errors and imperfections. Recent techniques for perfect signal reconstruction in such systems are reviewed. The connection between QMF banks and other related topics, such as block digital filtering and periodically time-varying systems, based on a pseudo-circulant matrix framework, is covered. Unconventional applications of the polyphase concept are discussed
    corecore