3 research outputs found

    Asymmetric gradient coil design for use in a short, open bore magnetic resonance imaging scanner

    Get PDF
    A conventional cylindrical whole-body MRI scanner has a long bore that may cause claustrophobia for some patients in addition to being inconvenient for healthcare workers accessing the patient. A short-bore scanner usually offers a small sized imaging area, which is impractical for imaging some body parts, such as the torso. This work proposes a novel asymmetric gradient coil design that offers a full-sized imaging area close to one end of the coil. In the new design, the primary and shielding coils are connected at one end whilst separated at the other, allowing the installation of the cooling system and shim trays. The proposed coils have a larger wire gap, higher efficiency, lower inductance, less resistance and a higher figure of merit than the non-connected coils. This half-connected coil structure not only improves the coils’ electromagnetic performance, but also slightly attenuates acoustic radiation at most frequencies when compared to a non-connected gradient coil. It is also quieter in some frequency bands than a conventional symmetric gradient coil

    3-D gradient coil design-initial theoretical framework

    No full text
    An analytic inverse method is presented for the theoretical design of 3-D transverse gradient coils. Existing gradient coil design methods require the basic geometry of the coil to be predetermined before optimization. Typically, coil windings are constrained to lie on cylindrical, planar, spherical, or conical surfaces. In this paper, a fully 3-D region in the solution space is explored and the precise geometry of the gradient coils is obtained as part of the optimization process. Primary interest lies in minimizing the field error between induced and target gradient fields within a spherical target region. This is achieved using regularization, in which the field error is minimized along with the total coil power, to obtain a 3-D current density solution within the coil volume. A novel priority streamline technique is used to create 3-D coil windings that approximate this current density, and a secondary optimization is performed to obtain appropriate coil currents. The 3-D coil windings display an interesting general geometric form involving sets of closed loops plus spiral-type coils, and a number of examples are presented and discussed. The corresponding induced magnetic field is found to be highly linear within the region of interest, and a shielding constraint may be implemented to minimize the field outside the coil volume

    Gradient coil design and acoustic noise control in magnetic resonance imaging systems

    Get PDF
    corecore