18,783 research outputs found

    Efficient Implementation of the Room Simulator for Training Deep Neural Network Acoustic Models

    Full text link
    In this paper, we describe how to efficiently implement an acoustic room simulator to generate large-scale simulated data for training deep neural networks. Even though Google Room Simulator in [1] was shown to be quite effective in reducing the Word Error Rates (WERs) for far-field applications by generating simulated far-field training sets, it requires a very large number of Fast Fourier Transforms (FFTs) of large size. Room Simulator in [1] used approximately 80 percent of Central Processing Unit (CPU) usage in our CPU + Graphics Processing Unit (GPU) training architecture [2]. In this work, we implement an efficient OverLap Addition (OLA) based filtering using the open-source FFTW3 library. Further, we investigate the effects of the Room Impulse Response (RIR) lengths. Experimentally, we conclude that we can cut the tail portions of RIRs whose power is less than 20 dB below the maximum power without sacrificing the speech recognition accuracy. However, we observe that cutting RIR tail more than this threshold harms the speech recognition accuracy for rerecorded test sets. Using these approaches, we were able to reduce CPU usage for the room simulator portion down to 9.69 percent in CPU/GPU training architecture. Profiling result shows that we obtain 22.4 times speed-up on a single machine and 37.3 times speed up on Google's distributed training infrastructure.Comment: Published at INTERSPEECH 2018. (https://www.isca-speech.org/archive/Interspeech_2018/abstracts/2566.html

    Deep Long Short-Term Memory Adaptive Beamforming Networks For Multichannel Robust Speech Recognition

    Full text link
    Far-field speech recognition in noisy and reverberant conditions remains a challenging problem despite recent deep learning breakthroughs. This problem is commonly addressed by acquiring a speech signal from multiple microphones and performing beamforming over them. In this paper, we propose to use a recurrent neural network with long short-term memory (LSTM) architecture to adaptively estimate real-time beamforming filter coefficients to cope with non-stationary environmental noise and dynamic nature of source and microphones positions which results in a set of timevarying room impulse responses. The LSTM adaptive beamformer is jointly trained with a deep LSTM acoustic model to predict senone labels. Further, we use hidden units in the deep LSTM acoustic model to assist in predicting the beamforming filter coefficients. The proposed system achieves 7.97% absolute gain over baseline systems with no beamforming on CHiME-3 real evaluation set.Comment: in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP

    Fully Learnable Front-End for Multi-Channel Acoustic Modeling using Semi-Supervised Learning

    Full text link
    In this work, we investigated the teacher-student training paradigm to train a fully learnable multi-channel acoustic model for far-field automatic speech recognition (ASR). Using a large offline teacher model trained on beamformed audio, we trained a simpler multi-channel student acoustic model used in the speech recognition system. For the student, both multi-channel feature extraction layers and the higher classification layers were jointly trained using the logits from the teacher model. In our experiments, compared to a baseline model trained on about 600 hours of transcribed data, a relative word-error rate (WER) reduction of about 27.3% was achieved when using an additional 1800 hours of untranscribed data. We also investigated the benefit of pre-training the multi-channel front end to output the beamformed log-mel filter bank energies (LFBE) using L2 loss. We find that pre-training improves the word error rate by 10.7% when compared to a multi-channel model directly initialized with a beamformer and mel-filter bank coefficients for the front end. Finally, combining pre-training and teacher-student training produces a WER reduction of 31% compared to our baseline.Comment: To appear in ICASSP 202

    Spatial Diffuseness Features for DNN-Based Speech Recognition in Noisy and Reverberant Environments

    Full text link
    We propose a spatial diffuseness feature for deep neural network (DNN)-based automatic speech recognition to improve recognition accuracy in reverberant and noisy environments. The feature is computed in real-time from multiple microphone signals without requiring knowledge or estimation of the direction of arrival, and represents the relative amount of diffuse noise in each time and frequency bin. It is shown that using the diffuseness feature as an additional input to a DNN-based acoustic model leads to a reduced word error rate for the REVERB challenge corpus, both compared to logmelspec features extracted from noisy signals, and features enhanced by spectral subtraction.Comment: accepted for ICASSP201
    • …
    corecore