2,902,761 research outputs found

    Magic wavelengths for the 6s21S06s6p3P1o6s^2\,^1S_0-6s6p\,^3P_1^o transition in ytterbium atom

    Full text link
    The static and dynamic electric-dipole polarizabilities of the 6s21S06s^2\,^1S_0 and 6s6p3P1o6s6p\,^3P_1^o states of Yb are calculated by using the relativistic ab initio method. Focusing on the red detuning region to the 6s21S06s6p3P1o6s^2\,^1S_0-6s6p\,^3P_1^o transition, we find two magic wavelengths at 1035.7(2) nm and 612.9(2) nm for the 6s21S06s6p3P1o,MJ=06s^2\,^1S_0-6s6p\,^3P_1^o, M_J=0 transition and three magic wavelengthes at 1517.68(6) nm, 1036.0(3) nm and 858(12) nm for the 6s21S06s6p3P1o,MJ=±16s^2\,^1S_0-6s6p\,^3P_1^o, M_J=\pm1 transitions. Such magic wavelengths are of particular interest for attaining the state-insensitive cooling, trapping, and quantum manipulation of neutral Yb atom.Comment: 13 pages, 3 figure

    Electron transport properties of sub-3-nm diameter copper nanowires

    Get PDF
    Density functional theory and density functional tight-binding are applied to model electron transport in copper nanowires of approximately 1 nm and 3 nm diameters with varying crystal orientation and surface termination. The copper nanowires studied are found to be metallic irrespective of diameter, crystal orientation and/or surface termination. Electron transmission is highly dependent on crystal orientation and surface termination. Nanowires oriented along the [110] crystallographic axis consistently exhibit the highest electron transmission while surface oxidized nanowires show significantly reduced electron transmission compared to unterminated nanowires. Transmission per unit area is calculated in each case, for a given crystal orientation we find that this value decreases with diameter for unterminated nanowires but is largely unaffected by diameter in surface oxidized nanowires for the size regime considered. Transmission pathway plots show that transmission is larger at the surface of unterminated nanowires than inside the nanowire and that transmission at the nanowire surface is significantly reduced by surface oxidation. Finally, we present a simple model which explains the transport per unit area dependence on diameter based on transmission pathways results

    Sulphur abundances in halo stars from Multiplet 3 at 1045 nm

    Get PDF
    Sulphur is a volatile alpha-element which is not locked into dust grains in the interstellar medium (ISM). Hence, its abundance does not need to be corrected for dust depletion when comparing the ISM to the stellar atmospheres. The abundance of sulphur in the photosphere of metal-poor stars is a matter of debate: according to some authors, [S/Fe] versus [Fe/H] forms a plateau at low metallicity, while, according to other studies, there is a large scatter or perhaps a bimodal distribution. In metal-poor stars sulphur is detectable by its lines of Mult.1 at 920 nm, but this range is heavily contaminated by telluric absorptions, and one line of the multiplet is blended by the hydrogen Paschen zeta line. We study the possibility of using Mult. 3 (at 1045 nm) for deriving the sulphur abundance because this range, now observable at the VLT with the infra-red spectrograph CRIRES, is little contaminated by telluric absorption and not affected by blends at least in metal-poor stars. We compare the abundances derived from Multiplets 1 and 3, taking into account NLTE corrections and 3D effects. Here we present the results for a sample of four stars, although the scatter is less pronounced than in previous analysis, we cannot find a plateau in [S/Fe], and confirm the scatter of the sulphur abundance at low metallicity.Comment: to be published in Astronomische Nachrichte

    Broadband stimulated four-wave parametric conversion on a tantalum pentoxide photonic chip

    No full text
    We exploit the large third order nonlinear susceptibility (?(3) or “Chi 3”) of tantalum pentoxide (Ta2O5) planar waveguides and realize broadband optical parametric conversion on-chip. We use a co-linear pump-probe configuration and observe stimulated four wave parametric conversion when seeding either in the visible or the infrared. Pumping at 800 nm we observe parametric conversion over a broad spectral range with the parametric idler output spanning from 1200 nm to 1600 nm in infrared wavelengths and from 555 nm to 600 nm in visible wavelengths. Our demonstration of on-chip stimulated four wave parametric conversion introduces Ta2O5 as a novel material for broadband integrated nonlinear photonic circuit applications

    Antibody 10-1074 suppresses viremia in HIV-1-infected individuals

    Get PDF
    Monoclonal antibody 10-1074 targets the V3 glycan supersite on the HIV-1 envelope (Env) protein. It is among the most potent anti-HIV-1 neutralizing antibodies isolated so far. Here we report on its safety and activity in 33 individuals who received a single intravenous infusion of the antibody. 10-1074 was well tolerated and had a half-life of 24.0 d in participants without HIV-1 infection and 12.8 d in individuals with HIV-1 infection. Thirteen individuals with viremia received the highest dose of 30 mg/kg 10-1074. Eleven of these participants were 10-1074-sensitive and showed a rapid decline in viremia by a mean of 1.52 log_(10) copies/ml. Virologic analysis revealed the emergence of multiple independent 10-1074-resistant viruses in the first weeks after infusion. Emerging escape variants were generally resistant to the related V3-specific antibody PGT121, but remained sensitive to antibodies targeting nonoverlapping epitopes, such as the anti-CD4-binding-site antibodies 3BNC117 and VRC01. The results demonstrate the safety and activity of 10-1074 in humans and support the idea that antibodies targeting the V3 glycan supersite might be useful for the treatment and prevention of HIV-1 infection

    Generation of five phase-locked harmonics by implementing a divide-by-three optical frequency divider

    Get PDF
    We report the generation of five phase-locked harmonics, f_1: 2403 nm, f_2: 1201 nm, f_3: 801 nm, f_4: 600 nm, and f_5: 480 nm with an exact frequency ratio of 1 : 2 : 3 : 4 : 5 by implementing a divide-by-three optical-frequency divider in the high harmonic generation process. All five harmonics are generated coaxially with high phase coherence in time and space, which are applicable for various practical uses.Comment: 6 pages, 6 figure

    Magneto-optical trap for metastable helium at 389 nm

    Full text link
    We have constructed a magneto-optical trap (MOT) for metastable triplet helium atoms utilizing the 2 3S1 -> 3 3P2 line at 389 nm as the trapping and cooling transition. The far-red-detuned MOT (detuning Delta = -41 MHz) typically contains few times 10^7 atoms at a relatively high (~10^9 cm^-3) density, which is a consequence of the large momentum transfer per photon at 389 nm and a small two-body loss rate coefficient (2 * 10^-10 cm^3/s < beta < 1.0 * 10^-9 cm^3/s). The two-body loss rate is more than five times smaller than in a MOT on the commonly used 2 3S1 -> 2 3P2 line at 1083 nm. Furthermore, we measure a temperature of 0.46(1) mK, a factor 2.5 lower as compared to the 1083 nm case. Decreasing the detuning to Delta= -9 MHz results in a cloud temperature as low as 0.25(1) mK, at small number of trapped atoms. The 389 nm MOT exhibits small losses due to two-photon ionization, which have been investigated as well.Comment: 11 page
    corecore