45 research outputs found

    A Comparative Study of Population-Graph Construction Methods and Graph Neural Networks for Brain Age Regression

    Full text link
    The difference between the chronological and biological brain age of a subject can be an important biomarker for neurodegenerative diseases, thus brain age estimation can be crucial in clinical settings. One way to incorporate multimodal information into this estimation is through population graphs, which combine various types of imaging data and capture the associations among individuals within a population. In medical imaging, population graphs have demonstrated promising results, mostly for classification tasks. In most cases, the graph structure is pre-defined and remains static during training. However, extracting population graphs is a non-trivial task and can significantly impact the performance of Graph Neural Networks (GNNs), which are sensitive to the graph structure. In this work, we highlight the importance of a meaningful graph construction and experiment with different population-graph construction methods and their effect on GNN performance on brain age estimation. We use the homophily metric and graph visualizations to gain valuable quantitative and qualitative insights on the extracted graph structures. For the experimental evaluation, we leverage the UK Biobank dataset, which offers many imaging and non-imaging phenotypes. Our results indicate that architectures highly sensitive to the graph structure, such as Graph Convolutional Network (GCN) and Graph Attention Network (GAT), struggle with low homophily graphs, while other architectures, such as GraphSage and Chebyshev, are more robust across different homophily ratios. We conclude that static graph construction approaches are potentially insufficient for the task of brain age estimation and make recommendations for alternative research directions.Comment: Accepted at GRAIL, MICCAI 202

    Population Graph Cross-Network Node Classification for Autism Detection Across Sample Groups

    Full text link
    Graph neural networks (GNN) are a powerful tool for combining imaging and non-imaging medical information for node classification tasks. Cross-network node classification extends GNN techniques to account for domain drift, allowing for node classification on an unlabeled target network. In this paper we present OTGCN, a powerful, novel approach to cross-network node classification. This approach leans on concepts from graph convolutional networks to harness insights from graph data structures while simultaneously applying strategies rooted in optimal transport to correct for the domain drift that can occur between samples from different data collection sites. This blended approach provides a practical solution for scenarios with many distinct forms of data collected across different locations and equipment. We demonstrate the effectiveness of this approach at classifying Autism Spectrum Disorder subjects using a blend of imaging and non-imaging data.Comment: To appear ICDM DMBIH workshop 202

    Unleashing the Power of Prompt-driven Nucleus Instance Segmentation

    Full text link
    Nucleus instance segmentation in histology images is crucial for a broad spectrum of clinical applications. Current dominant algorithms rely on regression of nuclear proxy maps. Distinguishing nucleus instances from the estimated maps requires carefully curated post-processing, which is error-prone and parameter-sensitive. Recently, the Segment Anything Model (SAM) has earned huge attention in medical image segmentation, owing to its impressive generalization ability and promptable property. Nevertheless, its potential on nucleus instance segmentation remains largely underexplored. In this paper, we present a novel prompt-driven framework that consists of a nucleus prompter and SAM for automatic nucleus instance segmentation. Specifically, the prompter learns to generate a unique point prompt for each nucleus while the SAM is fine-tuned to output the corresponding mask for the prompted nucleus. Furthermore, we propose the inclusion of adjacent nuclei as negative prompts to enhance the model's capability to identify overlapping nuclei. Without complicated post-processing, our proposed method sets a new state-of-the-art performance on three challenging benchmarks. Code is available at \url{github.com/windygoo/PromptNucSeg}Comment: under revie

    Edge-weighted pFISTA-Net for MRI Reconstruction

    Full text link
    Deep learning based on unrolled algorithm has served as an effective method for accelerated magnetic resonance imaging (MRI). However, many methods ignore the direct use of edge information to assist MRI reconstruction. In this work, we present the edge-weighted pFISTA-Net that directly applies the detected edge map to the soft-thresholding part of pFISTA-Net. The soft-thresholding value of different regions will be adjusted according to the edge map. Experimental results of a public brain dataset show that the proposed yields reconstructions with lower error and better artifact suppression compared with the state-of-the-art deep learning-based methods. The edge-weighted pFISTA-Net also shows robustness for different undersampling masks and edge detection operators. In addition, we extend the edge weighted structure to joint reconstruction and segmentation network and obtain improved reconstruction performance and more accurate segmentation results

    Enhancing Point Annotations with Superpixel and Confidence Learning Guided for Improving Semi-Supervised OCT Fluid Segmentation

    Full text link
    Automatic segmentation of fluid in Optical Coherence Tomography (OCT) images is beneficial for ophthalmologists to make an accurate diagnosis. Although semi-supervised OCT fluid segmentation networks enhance their performance by introducing additional unlabeled data, the performance enhancement is limited. To address this, we propose Superpixel and Confident Learning Guide Point Annotations Network (SCLGPA-Net) based on the teacher-student architecture, which can learn OCT fluid segmentation from limited fully-annotated data and abundant point-annotated data. Specifically, we use points to annotate fluid regions in unlabeled OCT images and the Superpixel-Guided Pseudo-Label Generation (SGPLG) module generates pseudo-labels and pixel-level label trust maps from the point annotations. The label trust maps provide an indication of the reliability of the pseudo-labels. Furthermore, we propose the Confident Learning Guided Label Refinement (CLGLR) module identifies error information in the pseudo-labels and leads to further refinement. Experiments on the RETOUCH dataset show that we are able to reduce the need for fully-annotated data by 94.22\%, closing the gap with the best fully supervised baselines to a mean IoU of only 2\%. Furthermore, We constructed a private 2D OCT fluid segmentation dataset for evaluation. Compared with other methods, comprehensive experimental results demonstrate that the proposed method can achieve excellent performance in OCT fluid segmentation.Comment: Submission to BSP

    Inherently Interpretable Multi-Label Classification Using Class-Specific Counterfactuals

    Full text link
    Interpretability is essential for machine learning algorithms in high-stakes application fields such as medical image analysis. However, high-performing black-box neural networks do not provide explanations for their predictions, which can lead to mistrust and suboptimal human-ML collaboration. Post-hoc explanation techniques, which are widely used in practice, have been shown to suffer from severe conceptual problems. Furthermore, as we show in this paper, current explanation techniques do not perform adequately in the multi-label scenario, in which multiple medical findings may co-occur in a single image. We propose Attri-Net, an inherently interpretable model for multi-label classification. Attri-Net is a powerful classifier that provides transparent, trustworthy, and human-understandable explanations. The model first generates class-specific attribution maps based on counterfactuals to identify which image regions correspond to certain medical findings. Then a simple logistic regression classifier is used to make predictions based solely on these attribution maps. We compare Attri-Net to five post-hoc explanation techniques and one inherently interpretable classifier on three chest X-ray datasets. We find that Attri-Net produces high-quality multi-label explanations consistent with clinical knowledge and has comparable classification performance to state-of-the-art classification models.Comment: Accepted to MIDL 202

    Two Independent Teachers are Better Role Model

    Full text link
    Recent deep learning models have attracted substantial attention in infant brain analysis. These models have performed state-of-the-art performance, such as semi-supervised techniques (e.g., Temporal Ensembling, mean teacher). However, these models depend on an encoder-decoder structure with stacked local operators to gather long-range information, and the local operators limit the efficiency and effectiveness. Besides, the MRIMRI data contain different tissue properties (TPsTPs) such as T1T1 and T2T2. One major limitation of these models is that they use both data as inputs to the segment process, i.e., the models are trained on the dataset once, and it requires much computational and memory requirements during inference. In this work, we address the above limitations by designing a new deep-learning model, called 3D-DenseUNet, which works as adaptable global aggregation blocks in down-sampling to solve the issue of spatial information loss. The self-attention module connects the down-sampling blocks to up-sampling blocks, and integrates the feature maps in three dimensions of spatial and channel, effectively improving the representation potential and discriminating ability of the model. Additionally, we propose a new method called Two Independent Teachers (2IT2IT), that summarizes the model weights instead of label predictions. Each teacher model is trained on different types of brain data, T1T1 and T2T2, respectively. Then, a fuse model is added to improve test accuracy and enable training with fewer parameters and labels compared to the Temporal Ensembling method without modifying the network architecture. Empirical results demonstrate the effectiveness of the proposed method.Comment: This manuscript contains 14 pages, 7 figures. We have submitted the manuscript to Journal of IEEE Transactions on Medical Imaging (TMI) in June 202

    A Survey on Deep Learning in Medical Image Registration: New Technologies, Uncertainty, Evaluation Metrics, and Beyond

    Full text link
    Over the past decade, deep learning technologies have greatly advanced the field of medical image registration. The initial developments, such as ResNet-based and U-Net-based networks, laid the groundwork for deep learning-driven image registration. Subsequent progress has been made in various aspects of deep learning-based registration, including similarity measures, deformation regularizations, and uncertainty estimation. These advancements have not only enriched the field of deformable image registration but have also facilitated its application in a wide range of tasks, including atlas construction, multi-atlas segmentation, motion estimation, and 2D-3D registration. In this paper, we present a comprehensive overview of the most recent advancements in deep learning-based image registration. We begin with a concise introduction to the core concepts of deep learning-based image registration. Then, we delve into innovative network architectures, loss functions specific to registration, and methods for estimating registration uncertainty. Additionally, this paper explores appropriate evaluation metrics for assessing the performance of deep learning models in registration tasks. Finally, we highlight the practical applications of these novel techniques in medical imaging and discuss the future prospects of deep learning-based image registration

    EpilepsyNet: Novel automated detection of epilepsy using transformer model with EEG signals from 121 patient population

    Get PDF
    Background: Epilepsy is one of the most common neurological conditions globally, and the fourth most common in the United States. Recurrent non-provoked seizures characterize it and have huge impacts on the quality of life and financial impacts for affected individuals. A rapid and accurate diagnosis is essential in order to instigate and monitor optimal treatments. There is also a compelling need for the accurate interpretation of epilepsy due to the current scarcity in neurologist diagnosticians and a global inequity in access and outcomes. Furthermore, the existing clinical and traditional machine learning diagnostic methods exhibit limitations, warranting the need to create an automated system using deep learning model for epilepsy detection and monitoring using a huge database. Method: The EEG signals from 35 channels were used to train the deep learning-based transformer model named (EpilepsyNet). For each training iteration, 1-min-long data were randomly sampled from each participant. Thereafter, each 5-s epoch was mapped to a matrix using the Pearson Correlation Coefficient (PCC), such that the bottom part of the triangle was discarded and only the upper triangle of the matrix was vectorized as input data. PCC is a reliable method used to measure the statistical relationship between two variables. Based on the 5 s of data, single embedding was performed thereafter to generate a 1-dimensional array of signals. In the final stage, a positional encoding with learnable parameters was added to each correlation coefficient’s embedding before being fed to the developed EpilepsyNet as input data to epilepsy EEG signals. The ten-fold cross-validation technique was used to generate the model. Results: Our transformer-based model (EpilepsyNet) yielded high classification accuracy, sensitivity, specificity and positive predictive values of 85%, 82%, 87%, and 82%, respectively. Conclusion: The proposed method is both accurate and robust since ten-fold cross-validation was employed to evaluate the performance of the model. Compared to the deep models used in existing studies for epilepsy diagnosis, our proposed method is simple and less computationally intensive. This is the earliest study to have uniquely employed the positional encoding with learnable parameters to each correlation coefficient’s embedding together with the deep transformer model, using a huge database of 121 participants for epilepsy detection. With the training and validation of the model using a larger dataset, the same study approach can be extended for the detection of other neurological conditions, with a transformative impact on neurological diagnostics worldwide
    corecore