505 research outputs found

    Multimodal Automated Fact-Checking: A Survey

    Full text link
    Misinformation is often conveyed in multiple modalities, e.g. a miscaptioned image. Multimodal misinformation is perceived as more credible by humans, and spreads faster than its text-only counterparts. While an increasing body of research investigates automated fact-checking (AFC), previous surveys mostly focus on text. In this survey, we conceptualise a framework for AFC including subtasks unique to multimodal misinformation. Furthermore, we discuss related terms used in different communities and map them to our framework. We focus on four modalities prevalent in real-world fact-checking: text, image, audio, and video. We survey benchmarks and models, and discuss limitations and promising directions for future researchComment: The 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP): Finding

    Multi-task Neural Network for Non-discrete Attribute Prediction in Knowledge Graphs

    Full text link
    Many popular knowledge graphs such as Freebase, YAGO or DBPedia maintain a list of non-discrete attributes for each entity. Intuitively, these attributes such as height, price or population count are able to richly characterize entities in knowledge graphs. This additional source of information may help to alleviate the inherent sparsity and incompleteness problem that are prevalent in knowledge graphs. Unfortunately, many state-of-the-art relational learning models ignore this information due to the challenging nature of dealing with non-discrete data types in the inherently binary-natured knowledge graphs. In this paper, we propose a novel multi-task neural network approach for both encoding and prediction of non-discrete attribute information in a relational setting. Specifically, we train a neural network for triplet prediction along with a separate network for attribute value regression. Via multi-task learning, we are able to learn representations of entities, relations and attributes that encode information about both tasks. Moreover, such attributes are not only central to many predictive tasks as an information source but also as a prediction target. Therefore, models that are able to encode, incorporate and predict such information in a relational learning context are highly attractive as well. We show that our approach outperforms many state-of-the-art methods for the tasks of relational triplet classification and attribute value prediction.Comment: Accepted at CIKM 201

    Incorporating Impressions to Graph-Based Recommenders

    Get PDF
    Graph-based approaches have become an effective strategy to model the users’ preferences in recommender systems accurately; however, despite their excellent recommendation quality, the literature still needs to incorporate impressions (past recommendations) into existing approaches. By their definition, impressions contain the selection of the most relevant items for the user; enriching the users’ profiles with those items may lead to higher-quality recommendations. In this work, we propose and empirically explore the effectiveness of two approaches that include impressions into graph-based recommenders. Both approaches are simple yet extensible as they do not change the definitions of the recommenders; but transform their main data structure: the graph’s adjacency matrix. The results of our experiments suggest that our approaches may improve the recommendation quality of graph-based recommenders that do not use impressions; however, we also find that beyond-accuracy metrics may become negatively affected
    • …
    corecore