14 research outputs found

    Accelerated Real-Life (ARL) Testing and Characterization of Automotive LiDAR Sensors to facilitate the Development and Validation of Enhanced Sensor Models

    Full text link
    In the realm of automated driving simulation and sensor modeling, the need for highly accurate sensor models is paramount for ensuring the reliability and safety of advanced driving assistance systems (ADAS). Hence, numerous works focus on the development of high-fidelity models of ADAS sensors, such as camera, Radar as well as modern LiDAR systems to simulate the sensor behavior in different driving scenarios, even under varying environmental conditions, considering for example adverse weather effects. However, aging effects of sensors, leading to suboptimal system performance, are mostly overlooked by current simulation techniques. This paper introduces a cutting-edge Hardware-in-the-Loop (HiL) test bench designed for the automated, accelerated aging and characterization of Automotive LiDAR sensors. The primary objective of this research is to address the aging effects of LiDAR sensors over the product life cycle, specifically focusing on aspects such as laser beam profile deterioration, output power reduction and intrinsic parameter drift, which are mostly neglected in current sensor models. By that, this proceeding research is intended to path the way, not only towards identifying and modeling respective degradation effects, but also to suggest quantitative model validation metrics.Comment: 9th Symposium Driving Simulation 2023, Brunswick, German

    Evaluating the computational performance of the Xilinx Ultrascale plus EG Heterogeneous MPSoC

    Get PDF
    The emergent technology of Multi-Processor System-on-Chip (MPSoC), which combines heterogeneous computing with the high performance of Field Programmable Gate Arrays (FPGAs) is a very interesting platform for a huge number of applications ranging from medical imaging and augmented reality to high-performance computing in space. In this paper, we focus on the Xilinx Zynq UltraScale+ EG Heterogeneous MPSoC, which is composed of four different processing elements (PE): a dual-core Cortex-R5, a quad-core ARM Cortex-A53, a graphics processing unit (GPU) and a high end FPGA. Proper use of the heterogeneity and the different levels of parallelism of this platform becomes a challenging task. This paper evaluates this platform and each of its PEs to carry out fundamental operations in terms of computational performance. To this end, we evaluate image-based applications and a matrix multiplication kernel. On former, the image-based applications leverage the heterogeneity of the MPSoc and strategically distributes its tasks among both kinds of CPU cores and the FPGA. On the latter, we analyze separately each PE using different matrix multiplication benchmarks in order to assess and compare their performance in terms of MFlops. This kind of operations are being carried out for example in a large number of space-related applications where the MPSoCs are currently gaining momentum. Results stand out the fact that different PEs can collaborate efficiently with the aim of accelerating the computational-demanding tasks of an application. Another important aspect to highlight is that leveraging the parallel OpenBLAS library we achieve up to 12 GFlops with the four Cortex-A53 cores of the platform, which is a considerable performance for this kind of devices

    Evaluating the computational performance of the Xilinx Ultrascale+ EG Heterogeneous MPSoC

    Get PDF
    The emergent technology of Multi-Processor System-on-Chip (MPSoC), which combines heterogeneous computing with the high performance of Field Programmable Gate Arrays (FPGAs) is a very interesting platform for a huge number of applications ranging from medical imaging and augmented reality to high-performance computing in space. In this paper, we focus on the Xilinx Zynq UltraScale EG Heterogeneous MPSoC, which is composed of four different processing elements (PE): a dual-core Cortex-R5, a quad-core ARM Cortex-A53, a graphics processing unit (GPU) and a high end FPGA. Proper use of the heterogeneity and the different levels of parallelism of this platform becomes a challenging task. This paper evaluates this platform and each of its PEs to carry out fundamental operations in terms of computational performance. To this end, we evaluate image-based applications and a matrix multiplication kernel. On former, the image-based applications leverage the heterogeneity of the MPSoc and strategically distributes its tasks among both kinds of CPU cores and the FPGA. On the latter, we analyze separately each PE using different matrix multiplication benchmarks in order to assess and compare their performance in terms of MFlops. This kind of operations are being carried out for example in a large number of space-related applications where the MPSoCs are currently gaining momentum. Results stand out the fact that different PEs can collaborate efficiently with the aim of accelerating the computational-demanding tasks of an application. Another important aspect to highlight is that leveraging the parallel OpenBLAS library we achieve up to 12 GFlops with the four Cortex-A53 cores of the platform, which is a considerable performance for this kind of devices.This work has been supported by the Spanish Government through TIN2017-82972-R, ESP2015-68245-C4-1-P, the Valencian Regional Government through PROMETEO/2029/109 and the Universitat Jaume I through UJI-B2019-36. We thank Prof. L. Kosmidis and M. M. Trompouki for providing us the OpenGL ES 2.0 code implementation of the matrix multiplication

    PowerGAN: A Machine Learning Approach for Power Side-Channel Attack on Compute-in-Memory Accelerators

    Full text link
    Analog compute-in-memory (CIM) accelerators are becoming increasingly popular for deep neural network (DNN) inference due to their energy efficiency and in-situ vector-matrix multiplication (VMM) capabilities. However, as the use of DNNs expands, protecting user input privacy has become increasingly important. In this paper, we identify a security vulnerability wherein an adversary can reconstruct the user's private input data from a power side-channel attack, under proper data acquisition and pre-processing, even without knowledge of the DNN model. We further demonstrate a machine learning-based attack approach using a generative adversarial network (GAN) to enhance the reconstruction. Our results show that the attack methodology is effective in reconstructing user inputs from analog CIM accelerator power leakage, even when at large noise levels and countermeasures are applied. Specifically, we demonstrate the efficacy of our approach on the U-Net for brain tumor detection in magnetic resonance imaging (MRI) medical images, with a noise-level of 20% standard deviation of the maximum power signal value. Our study highlights a significant security vulnerability in analog CIM accelerators and proposes an effective attack methodology using a GAN to breach user privacy

    Development and experimental validation of high performance embedded intelligence and fail-operational urban surround perception solutions of the PRYSTINE project

    Get PDF
    Automated Driving Systems (ADSs) commend a substantial reduction of human-caused road accidents while simultaneously lowering emissions, mitigating congestion, decreasing energy consumption and increasing overall productivity. However, achieving higher SAE levels of driving automation and complying with ISO26262 C and D Automotive Safety Integrity Levels (ASILs) is a multi-disciplinary challenge that requires insights into safety-critical architectures, multi-modal perception and real-time control. This paper presents an assorted effort carried out in the European H2020 ECSEL project—PRYSTINE. In this paper, we (1) investigate Simplex, 1oo2d and hybrid fail-operational computing architectures, (2) devise a multi-modal perception system with fail-safety mechanisms, (3) present a passenger vehicle-based demonstrator for low-speed autonomy and (4) suggest a trust-based fusion approach validated on a heavy-duty truck.</p

    Proposal of an Adaptive Fault Tolerance Mechanism to Tolerate Intermittent Faults in RAM

    Full text link
    [EN] Due to transistor shrinking, intermittent faults are a major concern in current digital systems. This work presents an adaptive fault tolerance mechanism based on error correction codes (ECC), able to modify its behavior when the error conditions change without increasing the redundancy. As a case example, we have designed a mechanism that can detect intermittent faults and swap from an initial generic ECC to a specific ECC capable of tolerating one intermittent fault. We have inserted the mechanism in the memory system of a 32-bit RISC processor and validated it by using VHDL simulation-based fault injection. We have used two (39, 32) codes: a single error correction-double error detection (SEC-DED) and a code developed by our research group, called EPB3932, capable of correcting single errors and double and triple adjacent errors that include a bit previously tagged as error-prone. The results of injecting transient, intermittent, and combinations of intermittent and transient faults show that the proposed mechanism works properly. As an example, the percentage of failures and latent errors is 0% when injecting a triple adjacent fault after an intermittent stuck-at fault. We have synthesized the adaptive fault tolerance mechanism proposed in two types of FPGAs: non-reconfigurable and partially reconfigurable. In both cases, the overhead introduced is affordable in terms of hardware, time and power consumption.This research was supported in part by the Spanish Government, project TIN2016-81,075-R, and by Primeros Proyectos de Investigacion (PAID-06-18), Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia (UPV), project 20190032.Baraza Calvo, JC.; Gracia-Morán, J.; Saiz-Adalid, L.; Gil Tomás, DA.; Gil, P. (2020). Proposal of an Adaptive Fault Tolerance Mechanism to Tolerate Intermittent Faults in RAM. Electronics. 9(12):1-30. https://doi.org/10.3390/electronics9122074S130912International Technology Roadmap for Semiconductors (ITRS)http://www.itrs2.net/2013-itrs.htmlJeng, S.-L., Lu, J.-C., & Wang, K. (2007). A Review of Reliability Research on Nanotechnology. IEEE Transactions on Reliability, 56(3), 401-410. doi:10.1109/tr.2007.903188Ibe, E., Taniguchi, H., Yahagi, Y., Shimbo, K., & Toba, T. (2010). Impact of Scaling on Neutron-Induced Soft Error in SRAMs From a 250 nm to a 22 nm Design Rule. IEEE Transactions on Electron Devices, 57(7), 1527-1538. doi:10.1109/ted.2010.2047907Boussif, A., Ghazel, M., & Basilio, J. C. (2020). Intermittent fault diagnosability of discrete event systems: an overview of automaton-based approaches. Discrete Event Dynamic Systems, 31(1), 59-102. doi:10.1007/s10626-020-00324-yConstantinescu, C. (2003). Trends and challenges in VLSI circuit reliability. IEEE Micro, 23(4), 14-19. doi:10.1109/mm.2003.1225959Bondavalli, A., Chiaradonna, S., Di Giandomenico, F., & Grandoni, F. (2000). Threshold-based mechanisms to discriminate transient from intermittent faults. IEEE Transactions on Computers, 49(3), 230-245. doi:10.1109/12.841127Contant, O., Lafortune, S., & Teneketzis, D. (2004). Diagnosis of Intermittent Faults. Discrete Event Dynamic Systems, 14(2), 171-202. doi:10.1023/b:disc.0000018570.20941.d2Sorensen, B. A., Kelly, G., Sajecki, A., & Sorensen, P. W. (s. f.). An analyzer for detecting intermittent faults in electronic devices. Proceedings of AUTOTESTCON ’94. doi:10.1109/autest.1994.381590Gracia-Moran, J., Gil-Tomas, D., Saiz-Adalid, L. J., Baraza, J. C., & Gil-Vicente, P. J. (2010). Experimental validation of a fault tolerant microcomputer system against intermittent faults. 2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN). doi:10.1109/dsn.2010.5544288Fujiwara, E. (2005). Code Design for Dependable Systems. doi:10.1002/0471792748Hamming, R. W. (1950). Error Detecting and Error Correcting Codes. Bell System Technical Journal, 29(2), 147-160. doi:10.1002/j.1538-7305.1950.tb00463.xSaiz-Adalid, L.-J., Gil-Vicente, P.-J., Ruiz-García, J.-C., Gil-Tomás, D., Baraza, J.-C., & Gracia-Morán, J. (2013). Flexible Unequal Error Control Codes with Selectable Error Detection and Correction Levels. Computer Safety, Reliability, and Security, 178-189. doi:10.1007/978-3-642-40793-2_17Frei, R., McWilliam, R., Derrick, B., Purvis, A., Tiwari, A., & Di Marzo Serugendo, G. (2013). Self-healing and self-repairing technologies. The International Journal of Advanced Manufacturing Technology, 69(5-8), 1033-1061. doi:10.1007/s00170-013-5070-2Maiz, J., Hareland, S., Zhang, K., & Armstrong, P. (s. f.). Characterization of multi-bit soft error events in advanced SRAMs. IEEE International Electron Devices Meeting 2003. doi:10.1109/iedm.2003.1269335Schroeder, B., Pinheiro, E., & Weber, W.-D. (2011). DRAM errors in the wild. Communications of the ACM, 54(2), 100-107. doi:10.1145/1897816.1897844BanaiyanMofrad, A., Ebrahimi, M., Oboril, F., Tahoori, M. B., & Dutt, N. (2015). Protecting caches against multi-bit errors using embedded erasure coding. 2015 20th IEEE European Test Symposium (ETS). doi:10.1109/ets.2015.7138735Kim, J., Sullivan, M., Lym, S., & Erez, M. (2016). All-Inclusive ECC: Thorough End-to-End Protection for Reliable Computer Memory. 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA). doi:10.1109/isca.2016.60Hwang, A. A., Stefanovici, I. A., & Schroeder, B. (2012). Cosmic rays don’t strike twice. ACM SIGPLAN Notices, 47(4), 111-122. doi:10.1145/2248487.2150989Gil-Tomás, D., Gracia-Morán, J., Baraza-Calvo, J.-C., Saiz-Adalid, L.-J., & Gil-Vicente, P.-J. (2012). Studying the effects of intermittent faults on a microcontroller. Microelectronics Reliability, 52(11), 2837-2846. doi:10.1016/j.microrel.2012.06.004Plasma CPU Modelhttps://opencores.org/projects/plasmaArlat, J., Aguera, M., Amat, L., Crouzet, Y., Fabre, J.-C., Laprie, J.-C., … Powell, D. (1990). Fault injection for dependability validation: a methodology and some applications. IEEE Transactions on Software Engineering, 16(2), 166-182. doi:10.1109/32.44380Gil-Tomas, D., Gracia-Moran, J., Baraza-Calvo, J.-C., Saiz-Adalid, L.-J., & Gil-Vicente, P.-J. (2012). Analyzing the Impact of Intermittent Faults on Microprocessors Applying Fault Injection. IEEE Design & Test of Computers, 29(6), 66-73. doi:10.1109/mdt.2011.2179514Rashid, L., Pattabiraman, K., & Gopalakrishnan, S. (2010). Modeling the Propagation of Intermittent Hardware Faults in Programs. 2010 IEEE 16th Pacific Rim International Symposium on Dependable Computing. doi:10.1109/prdc.2010.52Amiri, M., Siddiqui, F. M., Kelly, C., Woods, R., Rafferty, K., & Bardak, B. (2016). FPGA-Based Soft-Core Processors for Image Processing Applications. Journal of Signal Processing Systems, 87(1), 139-156. doi:10.1007/s11265-016-1185-7Hailesellasie, M., Hasan, S. R., & Mohamed, O. A. (2019). MulMapper: Towards an Automated FPGA-Based CNN Processor Generator Based on a Dynamic Design Space Exploration. 2019 IEEE International Symposium on Circuits and Systems (ISCAS). doi:10.1109/iscas.2019.8702589Mittal, S. (2018). A survey of FPGA-based accelerators for convolutional neural networks. Neural Computing and Applications, 32(4), 1109-1139. doi:10.1007/s00521-018-3761-1Intel Completes Acquisition of Alterahttps://newsroom.intel.com/news-releases/intel-completes-acquisition-of-altera/#gs.mi6ujuAMD to Acquire Xilinx, Creating the Industry’s High Performance Computing Leaderhttps://www.amd.com/en/press-releases/2020-10-27-amd-to-acquire-xilinx-creating-the-industry-s-high-performance-computingKim, K. H., & Lawrence, T. F. (s. f.). Adaptive fault tolerance: issues and approaches. [1990] Proceedings. Second IEEE Workshop on Future Trends of Distributed Computing Systems. doi:10.1109/ftdcs.1990.138292Gonzalez, O., Shrikumar, H., Stankovic, J. A., & Ramamritham, K. (s. f.). Adaptive fault tolerance and graceful degradation under dynamic hard real-time scheduling. Proceedings Real-Time Systems Symposium. doi:10.1109/real.1997.641271Jacobs, A., George, A. D., & Cieslewski, G. (2009). Reconfigurable fault tolerance: A framework for environmentally adaptive fault mitigation in space. 2009 International Conference on Field Programmable Logic and Applications. doi:10.1109/fpl.2009.5272313Shin, D., Park, J., Park, J., Paul, S., & Bhunia, S. (2017). Adaptive ECC for Tailored Protection of Nanoscale Memory. IEEE Design & Test, 34(6), 84-93. doi:10.1109/mdat.2016.2615844Silva, F., Muniz, A., Silveira, J., & Marcon, C. (2020). CLC-A: An Adaptive Implementation of the Column Line Code (CLC) ECC. 2020 33rd Symposium on Integrated Circuits and Systems Design (SBCCI). doi:10.1109/sbcci50935.2020.9189901Mukherjee, S. S., Emer, J., Fossum, T., & Reinhardt, S. K. (s. f.). Cache scrubbing in microprocessors: myth or necessity? 10th IEEE Pacific Rim International Symposium on Dependable Computing, 2004. Proceedings. doi:10.1109/prdc.2004.1276550Saleh, A. M., Serrano, J. J., & Patel, J. H. (1990). Reliability of scrubbing recovery-techniques for memory systems. IEEE Transactions on Reliability, 39(1), 114-122. doi:10.1109/24.52622X9SRA User’s Manual (Rev. 1.1)https://www.manualshelf.com/manual/supermicro/x9sra/user-s-manual-1-1.htmlChishti, Z., Alameldeen, A. R., Wilkerson, C., Wu, W., & Lu, S.-L. (2009). Improving cache lifetime reliability at ultra-low voltages. Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture - Micro-42. doi:10.1145/1669112.1669126Datta, R., & Touba, N. A. (2011). Designing a fast and adaptive error correction scheme for increasing the lifetime of phase change memories. 29th VLSI Test Symposium. doi:10.1109/vts.2011.5783773Kim, J., Lim, J., Cho, W., Shin, K.-S., Kim, H., & Lee, H.-J. (2016). Adaptive Memory Controller for High-performance Multi-channel Memory. JSTS:Journal of Semiconductor Technology and Science, 16(6), 808-816. doi:10.5573/jsts.2016.16.6.808Yuan, L., Liu, H., Jia, P., & Yang, Y. (2015). Reliability-Based ECC System for Adaptive Protection of NAND Flash Memories. 2015 Fifth International Conference on Communication Systems and Network Technologies. doi:10.1109/csnt.2015.23Zhou, Y., Wu, F., Lu, Z., He, X., Huang, P., & Xie, C. (2019). SCORE. ACM Transactions on Architecture and Code Optimization, 15(4), 1-25. doi:10.1145/3291052Lu, S.-K., Li, H.-P., & Miyase, K. (2018). Adaptive ECC Techniques for Reliability and Yield Enhancement of Phase Change Memory. 2018 IEEE 24th International Symposium on On-Line Testing And Robust System Design (IOLTS). doi:10.1109/iolts.2018.8474118Chen, J., Andjelkovic, M., Simevski, A., Li, Y., Skoncej, P., & Krstic, M. (2019). Design of SRAM-Based Low-Cost SEU Monitor for Self-Adaptive Multiprocessing Systems. 2019 22nd Euromicro Conference on Digital System Design (DSD). doi:10.1109/dsd.2019.00080Wang, X., Jiang, L., & Chakrabarty, K. (2020). LSTM-based Analysis of Temporally- and Spatially-Correlated Signatures for Intermittent Fault Detection. 2020 IEEE 38th VLSI Test Symposium (VTS). doi:10.1109/vts48691.2020.9107600Ebrahimi, H., & G. Kerkhoff, H. (2018). Intermittent Resistance Fault Detection at Board Level. 2018 IEEE 21st International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS). doi:10.1109/ddecs.2018.00031Ebrahimi, H., & Kerkhoff, H. G. (2020). A New Monitor Insertion Algorithm for Intermittent Fault Detection. 2020 IEEE European Test Symposium (ETS). doi:10.1109/ets48528.2020.9131563Hsiao, M. Y. (1970). A Class of Optimal Minimum Odd-weight-column SEC-DED Codes. IBM Journal of Research and Development, 14(4), 395-401. doi:10.1147/rd.144.0395Benso, A., & Prinetto, P. (Eds.). (2004). Fault Injection Techniques and Tools for Embedded Systems Reliability Evaluation. Frontiers in Electronic Testing. doi:10.1007/b105828Gracia, J., Saiz, L. J., Baraza, J. C., Gil, D., & Gil, P. J. (2008). Analysis of the influence of intermittent faults in a microcontroller. 2008 11th IEEE Workshop on Design and Diagnostics of Electronic Circuits and Systems. doi:10.1109/ddecs.2008.4538761ZC702 Evaluation Board for the Zynq-7000 XC7Z020 SoChttps://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/ug850-zc702-eval-bd.pd

    Performance Evaluation for a Distributed On-Board Computer

    Get PDF
    Autonomous spacecraft, satellite communications, and Earth observation are examples of the growing significance of onboard applications with high demands for the processing power of onboard computers in the space domain. The space-grade hardware used for onboard computers does not cope with the computational demands of the current space applications. As a result, engineers are increasingly using Commercial off-the-shelf (COTS) components to build spacecraft. However, the COTS are vulnerable to cosmic radiation. The German Aerospace Center (DLR) addressed this problem and found a solution by creating a distributed system, the Scalable On-board computing for Space Avionics (ScOSA) with a heterogeneous number of nodes. This thesis focuses on selecting and applying a suitable benchmark for performance evaluation of the ScOSA distributed system. The results of the selected benchmark (OBPMark-Image Processing) show an increase in performance from 0.968 megapixels/s in one node to 1.538 megapixels/s while using three nodes

    Adaptive Lightweight Compression Acceleration on Hybrid CPU-FPGA System

    Get PDF

    Cost and Latency Optimized Edge Computing Platform

    Get PDF
    Latency-critical applications, e.g., automated and assisted driving services, can now be deployed in fog or edge computing environments, offloading energy-consuming tasks from end devices. Besides the proximity, though, the edge computing platform must provide the necessary operation techniques in order to avoid added delays by all means. In this paper, we propose an integrated edge platform that comprises orchestration methods with such objectives, in terms of handling the deployment of both functions and data. We show how the integration of the function orchestration solution with the adaptive data placement of a distributed key–value store can lead to decreased end-to-end latency even when the mobility of end devices creates a dynamic set of requirements. Along with the necessary monitoring features, the proposed edge platform is capable of serving the nomad users of novel applications with low latency requirements. We showcase this capability in several scenarios, in which we articulate the end-to-end latency performance of our platform by comparing delay measurements with the benchmark of a Redis-based setup lacking the adaptive nature of data orchestration. Our results prove that the stringent delay requisites necessitate the close integration that we present in this paper: functions and data must be orchestrated in sync in order to fully exploit the potential that the proximity of edge resources enables
    corecore