544,046 research outputs found
Chemical Stabilization of Perovskite Solar Cells with Functional Fulleropyrrolidines.
While perovskite solar cells have invigorated the photovoltaic research community due to their excellent power conversion efficiencies (PCEs), these devices notably suffer from poor stability. To address this crucial issue, a solution-processable organic chemical inhibition layer (OCIL) was integrated into perovskite solar cells, resulting in improved device stability and a maximum PCE of 16.3%. Photoenhanced self-doping of the fulleropyrrolidine mixture in the interlayers afforded devices that were advantageously insensitive to OCIL thickness, ranging from 4 to 190 nm. X-ray photoelectron spectroscopy (XPS) indicated that the fulleropyrrolidine mixture improved device stability by stabilizing the metal electrode and trapping ionic defects (i.e., I-) that originate from the perovskite active layer. Moreover, degraded devices were rejuvenated by repeatedly peeling away and replacing the OCIL/Ag electrode, and this repeel and replace process resulted in further improvement to device stability with minimal variation of device efficiency
A comparative investigation of the efficacy of CO2 and high power diode lasers for the forming of EN3 mild steel sheets
A comparative investigation of the effectiveness of a high power diode laser (HPDL) and a CO2 laser for the forming of thin section EN3 mild steel sheet has been conducted. The buckling mechanism was identified as the laser forming mechanism responsible for the induced bending. For both lasers it was found that the induced bending angles increased with an increasing number of irradiations and high laser powers, whilst decreasing as the traverse speed was increased. Also, it was apparent from the experimental results that the laser bending angle was only linearly proportional to the number of irradiations when the latter was small due to local material thickening along the bend edge with a high number of irradiations. Owing to the mild steel’s greater beam absorption at the HPDL wavelength, larger bending angles were induced when using the HPDL. However, under certain conditions the performance of the CO2 laser in terms of induced bending angle was seen to approach that of the HPDL. Nevertheless, similar results between the two lasers were only achieved with increasing irradiations, thus it was concluded that the efficacy of the HPDL was higher than that of the CO2 laser insofar as it was more efficient. From graphical results and the employment of an analytical procedure, the laser line energy range in which accurate control of the HPDL bending of the mild steel sheets could be exercised efficiently was found to be 53 J mm-1 < P/v < 78 J mm-1, whilst for the CO2 laser the range was 61 J mm-1 < P/v < 85 J mm-1
Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: an investigation by response surface methodology
Effects of material and process parameters on the diameter of electrospun polyacrylonitrile fibers were experimentally investigated. Response surface methodology (RSM) was utilized to design the experiments at the settings of solution concentration, voltage and the collector distance. It also imparted the evaluation of the significance of each parameter on the resultant fiber diameter. The investigations were carried out in the two-variable process domains of several collector distances as applied voltage and the solution concentration were varied at a fixed polymer molecular weight. The mean diameter and coefficient of variation were modeled by polynomial response surfaces as functions of solution concentration and voltage at each collector distance. Effect of applied voltage in micron-scale fiber diameter was observed to be almost negligible when solution concentration and collector distance were high. However, all three factors were found statistically significant in the production of nano-scale fibers. The response surface predictions revealed the parameter interactions for the resultant fiber diameter, and showed that there is a negative correlation between the mean diameter and coefficient of variation for the fiber diameter. A sub-domain of the parameter space consisting of the solution concentration, applied voltage and collector distance, was suggested for the potential nano-scale fiber production
IMPLEMENTATION OF THE COMBINED RELAY PROTECTION SYSTEMS IN DISTRIBUTION GRIDS WITH SEVERAL SOURCES
Creation and integration of relay protection combined structures based on
microelectronic and electromechanical elements into distributed electric networks for costs reducing and improvement of their operation modes reliability, especially in conditions of several power sources or decentralized electricity supply systems. The availability of decentralized energy sources and their potential impact on the transient mode parameters in emergency of the power grid are examined
Exploration of the High Entropy Alloy Space as a Constraint Satisfaction Problem
High Entropy Alloys (HEAs), Multi-principal Component Alloys (MCA), or
Compositionally Complex Alloys (CCAs) are alloys that contain multiple
principal alloying elements. While many HEAs have been shown to have unique
properties, their discovery has been largely done through costly and
time-consuming trial-and-error approaches, with only an infinitesimally small
fraction of the entire possible composition space having been explored. In this
work, the exploration of the HEA composition space is framed as a Continuous
Constraint Satisfaction Problem (CCSP) and solved using a novel Constraint
Satisfaction Algorithm (CSA) for the rapid and robust exploration of alloy
thermodynamic spaces. The algorithm is used to discover regions in the HEA
Composition-Temperature space that satisfy desired phase constitution
requirements. The algorithm is demonstrated against a new (TCHEA1) CALPHAD HEA
thermodynamic database. The database is first validated by comparing phase
stability predictions against experiments and then the CSA is deployed and
tested against design tasks consisting of identifying not only single phase
solid solution regions in ternary, quaternary and quinary composition spaces
but also the identification of regions that are likely to yield
precipitation-strengthened HEAs.Comment: 14 pages, 13 figure
Insect diversity and composition during the wet and dry seasons in three forest types of Johor, Malaysia
The insect diversity and abundance in three forest types namely: Endau Rompin
(pristine lowland forest) Gunung Ledang (pristine highland forest) and Bukit Soga
(degraded lowland forest) in Johor, Malaysia were studied. The study focused on
10 common insect orders. The objectives are (1) to investigate the composition
and abundance of insect morphospecies in three forest types; (2) to compare the
composition and abundance of insect morphospecies in the wet and dry seasons in
three forest types; and (3) to determine the dominant insect of the study sites.
There were four sampling methods employed as baited pitfall traps, aerial net,
manual collection and sweep net. The sampling methods were employed three
days in each location. The different insects sampled, were higher during the wet
season as compared to the dry season (diversity and abundance). Although Bukit
Soga lowland a degraded forest had the highest diversity of 52; and abundance of
112,081 individuals, it had the lowest Shannon weiner index of species diversity
and lowest evenness of (H’1.09 and evenness of 0.28). Gunung Ledang, had
lowest species diversity of 32 and abundance of 1,695 individuals but had the
highest H’of 2.34 and highest evenness of 0.68. Endau Rompin had 46 species
diversity and abundance of 70,821individuals and H’of 1.17and evenness of 0.30.
In highland forest the most diverse dominant insects were the butterflies
(Lepidoptera: Rhopalocera). Meanwhile ant, (Hymenoptera: Formicidae) was
more diverse in lowland forest than the highland forest. In all the three locations,
ant was most abundant. Since Jaccard similarity index was low between Gunung
Ledang and Bukit Soga (0.22); and between Gunung Ledang and Endau Rompin
(0.27) it is concluded that altitude had a greater effect on insect diversity. This is
supported by a two ways ANOVA analyses that showed insect diversity and
abundance between the two lowland forests (Endau Rompin and Bukit Soga) and
highland forest (Gunung Ledang) are significantly different. Difference between
the lowland forests was not significant. Generally, effect of wet and dry seasons
has no clear impact on diversity but abundance was higher during wet season
especially for ants (Hymenoptera: Formicidae)
CVD nano-coating of carbon composites for space materials atomic oxygen shielding
The present work analyzes the possibility to employ carbon nanostructures as a basic material to prevent the erosion effects of atomic oxygen suffered by the carbon fiber reinforced polymeric material used in low earth orbit space environment. The application of thin protecting coatings to base materials is a widely used method for preventing the atomic oxygen induced erosion, and thus degradation. The generic purpose is to integrate carbon nanostructures onto carbon composites surface in order to develop the basic substrate of advanced nanocomposite for atomic oxygen protection. The final goal is the characterization of carbon nanostructures-reinforced carbon composites by means of on-ground atomic oxygen simulation facility, with the future objective to assess and optimize the process of carbon-multiscale advanced composites production. With such an aim, a wide investigation on the methane chemical vapor deposition (CVD) over catalyzed carbon fiber-based substrates has been carried out. The as grown nanostructures have been analyzed in terms of morphology, as well as regarding the main features of the resulting growth (yield, purity, homogeneity, coating uniformity, etc.) and the influence of the deposition route operating parameters (catalyst typology, gas flowing rate, growth time/temperature, etc.). A high degree of reproducibility in terms of the relationship between the carbon deposit type/yield and the main process variables (catalyst and protocol) has been thus obtained. Finally, atomic oxygen ground tests have been conducted in order to evaluate the coating process effectiveness. The on-ground test in atomic oxygen environment, with respect to the performances of the reference carbon composites (in terms of total mass loss and atomic oxygen rate of erosion), showed a worsening for the disordered carbon deposit, while an intriguing improvement was achieved by the high-yield carbon nano-filaments deposition
Helium bubble formation in ultrafine and nanocrystalline tungsten under different extreme conditions
We have investigated the effects of helium ion irradiation energy and sample temperature on the performance of grain boundaries as helium sinks in ultrafine grained and nanocrystalline tungsten. Irradiations were performed at displacement and non-displacement energies and at temperatures above and below that required for vacancy migration. Microstructural investigations were performed using Transmission Electron Microscopy (TEM) combined with either in-situ or ex-situ ion irradiation. Under helium irradiation at an energy which does not cause atomic displacements in tungsten (70 eV), regardless of temperature and thus vacancy migration conditions, bubbles were uniformly distributed with no preferential bubble formation on grain boundaries. At energies that can cause displacements, bubbles were observed to be preferentially formed on the grain boundaries only at high temperatures where vacancy migration occurs. Under these conditions, the decoration of grain boundaries with large facetted bubbles occurred on nanocrystalline grains with dimensions less than 60 nm. We discuss the importance of vacancy supply and the formation and migration of radiation-induced defects on the performance of grain boundaries as helium sinks and the resulting irradiation tolerance of ultrafine grained and nanocrystalline tungsten to bubble formatio
Preparation and electrochemical performance of hollow activated carbon fiber self-supported electrode for supercapacitor
Hollow activated carbon fiber (HACF) with high specific surface area and high charge storage capability was prepared by pre-oxidation, carbonization and KOH-activation from polyacrylonitrile (PAN). HACF was used as self-supported working electrode directly without any binder and conductive agent. The effect of the activation time on specific surface area of HACF was studied intensively. The results show that the specific surface area of HACF increased with the increase of activation time from 0.5 h to 1.5 h, and then decreased with further increase of activation time. Highest specific surface area of 1873 m(2)g(-1) and micropore volume of 0.61 cm(3)g(-1) were obtained in HACF activated for 1.5 h. Electrochemical properties of HACF can be improved with increase of activation time, but excessive activation results in the decrease of specific surface area and increase of internal resistance of HACF. The self-supported electrode of HACF possesses a large specific capacitance of 323 F g(-1) at 0.05 A g(-1) and 216 F g(-1) at 1 A g(-1). Therefore, HACF can be a promising self-supported electrode for high performance supercapacitors
- …
