3,893,408 research outputs found

    Four-fermion production at gamma gamma colliders: 2. Radiative corrections in double-pole approximation

    Full text link
    The O(alpha) electroweak radiative corrections to gamma gamma --> WW --> 4f within the electroweak Standard Model are calculated in double-pole approximation (DPA). Virtual corrections are treated in DPA, leading to a classification into factorizable and non-factorizable contributions, and real-photonic corrections are based on complete lowest-order matrix elements for gamma gamma --> 4f + gamma. Soft and collinear singularities appearing in the virtual and real corrections are combined alternatively in two different ways, namely by using the dipole subtraction method or by applying phase-space slicing. The radiative corrections are implemented in a Monte Carlo generator called COFFERgammagamma, which optionally includes anomalous triple and quartic gauge-boson couplings in addition and performs a convolution over realistic spectra of the photon beams. A detailed survey of numerical results comprises O(alpha) corrections to integrated cross sections as well as to angular, energy, and invariant-mass distributions. Particular attention is paid to the issue of collinear-safety in the observables.Comment: 42 pages, latex, 34 postscript figure

    ALMA Observations of the T Tauri Binary System AS 205: Evidence for Molecular Winds and/or Binary Interactions

    Get PDF
    In this study, we present high-resolution millimeter observations of the dust and gas disk of the T Tauri star AS 205 N and its companion, AS 205 S, obtained with the Atacama Large Millimeter Array. The gas disk around AS 205 N, for which infrared emission spectroscopy demonstrates significant deviations from Keplerian motion that has been interpreted as evidence for a disk wind (Pontoppidan et al. 2011; Bast et al. 2011), also displays significant deviations from Keplerian disk emission in the observations presented here. Detections near both AS 205 N and S are obtained in 1.3 mm continuum, 12CO 2-1, 13CO 2-1 and C18O 2-1. The 12CO emission is extended up to 2 arcsec from AS 205N, and both 12CO and 13CO display deviations from Keplerian rotation at all angular scales. Two possible explanations for these observations hold up best to close scrutiny - tidal interaction with AS 205 S or disk winds (or a combination of the two), and we discuss these possibilities in some detail.Comment: accepted by The Astrophysical Journa

    Darwin Tames an Andromeda Dwarf: Unraveling the Orbit of NGC 205 Using a Genetic Algorithm

    Full text link
    NGC 205, a close satellite of the M31 galaxy, is our nearest example of a dwarf elliptical galaxy. Photometric and kinematic observations suggest that NGC 205 is undergoing tidal distortion from its interaction with M31. Despite earlier attempts, the orbit and progenitor properties of NGC 205 are not well known. We perform an optimized search for these unknowns by combining a genetic algorithm with restricted N-body simulations of the interaction. This approach, coupled with photometric and kinematic observations as constraints, allows for an effective exploration of the parameter space. We represent NGC 205 as a static Hernquist potential with embedded massless test particles that serve as tracers of surface brightness. We explore 3 distinct, initially stable configurations of test particles: cold rotating disk, warm rotating disk, and hot, pressure-supported spheroid. Each model reproduces some, but not all, of the observed features of NGC 205, leading us to speculate that a rotating progenitor with substantial pressure support could match all of the observables. Furthermore, plausible combinations of mass and scale length for the pressure-supported spheroid progenitor model reproduce the observed velocity dispersion profile. For all 3 models, orbits that best match the observables place the satellite 11+/-9 kpc behind M31 moving at very large velocities: 300-500 km/s on primarily radial orbits. Given that the observed radial component is only 54 km/s, this implies a large tangential motion for NGC 205, moving from the NW to the SE. These results suggest NGC 205 is not associated with the stellar arc observed to the NE of NGC 205. Furthermore, NGC 205's velocity appears to be near or greater than its escape velocity, signifying that the satellite is likely on its first M31 passage.Comment: 34 pages, 20 figures, accepted for publication in the Astrophysical Journal, A pdf version with high-resolution figures may be obtained from http://www.ucolick.org/~kirsten/ms.pd

    MiR-205-5p inhibition by locked nucleic acids impairs metastatic potential of breast cancer cells

    Get PDF
    Mir-205 plays an important role in epithelial biogenesis and in mammary gland development but its role in cancer still remains controversial depending on the specific cellular context and target genes. We have previously reported that miR-205-5p is upregulated in breast cancer stem cells targeting ERBB pathway and leading to targeted therapy resistance. Here we show that miR-205-5p regulates tumorigenic properties of breast cancer cells, as well as epithelial to mesenchymal transition. Silencing this miRNA in breast cancer results in reduced tumor growth and metastatic spreading in mouse models. Moreover, we show that miR-205-5p knock-down can be obtained with the use of specific locked nucleic acids oligonucleotides in vivo suggesting a future potential use of this approach in therapy

    Ionized Nitrogen at High Redshift

    Get PDF
    We present secure [N II]_(205 μm) detections in two millimeter-bright, strongly lensed objects at high redshift, APM 08279+5255 (z = 3.911) and MM 18423+5938 (z = 3.930), using the IRAM Plateau de Bure Interferometer. Due to its ionization energy [N II]_(205 μm) is a good tracer of the ionized gas phase in the interstellar medium. The measured fluxes are S([N II]_(205 μm)) = (4.8 ± 0.8) Jy km s^(–1) and (7.4 ± 0.5) Jy km s^(–1), respectively, yielding line luminosities of L([N II]_(205 μm)) = (1.8 ± 0.3) × 10^9 μ^(–1) L_⊙ for APM 08279+5255 and L([N II]_(205 μm)) = (2.8 ± 0.2) × 10(^9) μ^(–1) L_⊙ for MM 18423+5938. Our high-resolution map of the [N II]_(205 μm) and 1 mm continuum emission in MM 18423+5938 clearly resolves an Einstein ring in this source and reveals a velocity gradient in the dynamics of the ionized gas. A comparison of these maps with high-resolution EVLA CO observations enables us to perform the first spatially resolved study of the dust continuum-to-molecular gas surface brightness (Σ_(FIR)α Σ^N_CO, which can be interpreted as the star formation law) in a high-redshift object. We find a steep relation (N = 1.4 ± 0.2), consistent with a starbursting environment. We measure a [N II]_(205 μm)/FIR luminosity ratio in APM 08279+5255 and MM 18423+5938 of 9.0 × 10^(–6) and 5.8 × 10^(–6), respectively. This is in agreement with the decrease of the [N II]_(205 μm)/FIR ratio at high FIR luminosities observed in local galaxies

    Herschel and JCMT observations of the early-type dwarf galaxy NGC 205

    Get PDF
    We present Herschel dust continuum, James Clerk Maxwell Telescope CO(3-2) observations and a search for [CII] 158 micron and [OI] 63 micron spectral line emission for the brightest early-type dwarf satellite of Andromeda, NGC 205. While direct gas measurements (Mgas ~ 1.5e+6 Msun, HI + CO(1-0)) have proven to be inconsistent with theoretical predictions of the current gas reservoir in NGC 205 (> 1e+7 Msun), we revise the missing interstellar medium mass problem based on new gas mass estimates (CO(3-2), [CII], [OI]) and indirect measurements of the interstellar medium content through dust continuum emission. Based on Herschel observations, covering a wide wavelength range from 70 to 500 micron, we are able to probe the entire dust content in NGC 205 (Mdust ~ 1.1-1.8e+4 Msun at Tdust ~ 18-22 K) and rule out the presence of a massive cold dust component (Mdust ~ 5e+5 Msun, Tdust ~ 12 K), which was suggested based on millimeter observations from the inner 18.4 arcsec. Assuming a reasonable gas-to-dust ratio of ~ 400, the dust mass in NGC 205 translates into a gas mass Mgas ~ 4-7e+6 Msun. The non-detection of [OI] and the low L_[CII]-to-L_CO(1-0) line intensity ratio (~ 1850) imply that the molecular gas phase is well traced by CO molecules in NGC 205. We estimate an atomic gas mass of 1.5e+4 Msun associated with the [CII] emitting PDR regions in NGC 205. From the partial CO(3-2) map of the northern region in NGC 205, we derive a molecular gas mass of M_H2 ~ 1.3e+5 Msun. [abridged]Comment: 16 pages, 7 figures, accepted for publication in MNRA

    Morphological transformation of NGC 205?

    Full text link
    NGC 205 is a dwarf elliptical galaxy which shows many features that are more typical of disk galaxies, and our recent study of the central stellar population has added another peculiarity. In the central regions, star formation has been on-going continuously for a few hundred Myr, until ca. 20 Myr ago, perhaps fed by gas funneled to the center in the course of morphological transformation. In this contribution we use a deep, wide-field image obtained at a scale of 2"/px to show that subtle structures can be detected in and near the body of the dwarf galaxy. The southern tidal tail can be mapped out to unprecedented distances from the center, and we suggest that the northern tail is partially hidden behind a very extended dust lane, or ring, belonging to M31. A spiral pattern emerges across the body of the galaxy, but it might be explained by another M31 dust filament.Comment: 2 pages, 1 figure, poster contributed to IAU Symposium 262, Stellar Populations -- Planning for the Next Decade, G. Bruzual & S. Charlot, ed
    corecore