3 research outputs found

    GPURepair: Automated Repair of GPU Kernels

    Full text link
    This paper presents a tool for repairing errors in GPU kernels written in CUDA or OpenCL due to data races and barrier divergence. Our novel extension to prior work can also remove barriers that are deemed unnecessary for correctness. We implement these ideas in our tool called GPURepair, which uses GPUVerify as the verification oracle for GPU kernels. We also extend GPUVerify to support CUDA Cooperative Groups, allowing GPURepair to perform inter-block synchronization for CUDA kernels. To the best of our knowledge, GPURepair is the only tool that can propose a fix for intra-block data races and barrier divergence errors for both CUDA and OpenCL kernels and the only tool that fixes inter-block data races for CUDA kernels. We perform extensive experiments on about 750 kernels and provide a comparison with prior work. We demonstrate the superiority of GPURepair through its capability to fix more kernels and its unique ability to remove redundant barriers and handle inter-block data races.Comment: 19 pages, 1 algorithm, 3 figures, 22nd International Conference on Verification Model Checking and Abstract Interpretation (VMCAI 2021

    Computing Betweenness Centrality in Link Streams

    Full text link
    Betweeness centrality is one of the most important concepts in graph analysis. It was recently extended to link streams, a graph generalization where links arrive over time. However, its computation raises non-trivial issues, due in particular to the fact that time is considered as continuous. We provide here the first algorithms to compute this generalized betweenness centrality, as well as several companion algorithms that have their own interest. They work in polynomial time and space, we illustrate them on typical examples, and we provide an implementation
    corecore