85 research outputs found

    Reverberation time estimation on the ACE corpus using the SDD method

    Full text link
    Reverberation Time (T60) is an important measure for characterizing the properties of a room. The author's T60 estimation algorithm was previously tested on simulated data where the noise is artificially added to the speech after convolution with a impulse responses simulated using the image method. We test the algorithm on speech convolved with real recorded impulse responses and noise from the same rooms from the Acoustic Characterization of Environments (ACE) corpus and achieve results comparable results to those using simulated data.Comment: In Proceedings of the ACE Challenge Workshop - a satellite event of IEEE-WASPAA 2015 (arXiv:1510.00383

    The ACE Challenge - corpus description and performance evaluation

    No full text

    Multi-scale Multi-band DenseNets for Audio Source Separation

    Full text link
    This paper deals with the problem of audio source separation. To handle the complex and ill-posed nature of the problems of audio source separation, the current state-of-the-art approaches employ deep neural networks to obtain instrumental spectra from a mixture. In this study, we propose a novel network architecture that extends the recently developed densely connected convolutional network (DenseNet), which has shown excellent results on image classification tasks. To deal with the specific problem of audio source separation, an up-sampling layer, block skip connection and band-dedicated dense blocks are incorporated on top of DenseNet. The proposed approach takes advantage of long contextual information and outperforms state-of-the-art results on SiSEC 2016 competition by a large margin in terms of signal-to-distortion ratio. Moreover, the proposed architecture requires significantly fewer parameters and considerably less training time compared with other methods.Comment: to appear at WASPAA 201

    PSD Estimation of Multiple Sound Sources in a Reverberant Room Using a Spherical Microphone Array

    Full text link
    We propose an efficient method to estimate source power spectral densities (PSDs) in a multi-source reverberant environment using a spherical microphone array. The proposed method utilizes the spatial correlation between the spherical harmonics (SH) coefficients of a sound field to estimate source PSDs. The use of the spatial cross-correlation of the SH coefficients allows us to employ the method in an environment with a higher number of sources compared to conventional methods. Furthermore, the orthogonality property of the SH basis functions saves the effort of designing specific beampatterns of a conventional beamformer-based method. We evaluate the performance of the algorithm with different number of sources in practical reverberant and non-reverberant rooms. We also demonstrate an application of the method by separating source signals using a conventional beamformer and a Wiener post-filter designed from the estimated PSDs.Comment: Accepted for WASPAA 201
    • …
    corecore