34 research outputs found

    Sonicverse: A Multisensory Simulation Platform for Embodied Household Agents that See and Hear

    Full text link
    Developing embodied agents in simulation has been a key research topic in recent years. Exciting new tasks, algorithms, and benchmarks have been developed in various simulators. However, most of them assume deaf agents in silent environments, while we humans perceive the world with multiple senses. We introduce Sonicverse, a multisensory simulation platform with integrated audio-visual simulation for training household agents that can both see and hear. Sonicverse models realistic continuous audio rendering in 3D environments in real-time. Together with a new audio-visual VR interface that allows humans to interact with agents with audio, Sonicverse enables a series of embodied AI tasks that need audio-visual perception. For semantic audio-visual navigation in particular, we also propose a new multi-task learning model that achieves state-of-the-art performance. In addition, we demonstrate Sonicverse's realism via sim-to-real transfer, which has not been achieved by other simulators: an agent trained in Sonicverse can successfully perform audio-visual navigation in real-world environments. Sonicverse is available at: https://github.com/StanfordVL/Sonicverse.Comment: In ICRA 2023. Project page: https://ai.stanford.edu/~rhgao/sonicverse/. Code: https://github.com/StanfordVL/sonicverse. Gao and Li contributed equally to this work and are in alphabetical orde

    Weakly-Supervised Audio-Visual Segmentation

    Full text link
    Audio-visual segmentation is a challenging task that aims to predict pixel-level masks for sound sources in a video. Previous work applied a comprehensive manually designed architecture with countless pixel-wise accurate masks as supervision. However, these pixel-level masks are expensive and not available in all cases. In this work, we aim to simplify the supervision as the instance-level annotation, i.e., weakly-supervised audio-visual segmentation. We present a novel Weakly-Supervised Audio-Visual Segmentation framework, namely WS-AVS, that can learn multi-scale audio-visual alignment with multi-scale multiple-instance contrastive learning for audio-visual segmentation. Extensive experiments on AVSBench demonstrate the effectiveness of our WS-AVS in the weakly-supervised audio-visual segmentation of single-source and multi-source scenarios
    corecore