51 research outputs found

    Some results related to the conjecture by Belfiore and Sol\'e

    Full text link
    In the first part of the paper, we consider the relation between kissing number and the secrecy gain. We show that on an n=24m+8kn=24m+8k-dimensional even unimodular lattice, if the shortest vector length is ≥2m\geq 2m, then as the number of vectors of length 2m2m decreases, the secrecy gain increases. We will also prove a similar result on general unimodular lattices. We will also consider the situations with shorter vectors. Furthermore, assuming the conjecture by Belfiore and Sol\'e, we will calculate the difference between inverses of secrecy gains as the number of vectors varies. We will show by an example that there exist two lattices in the same dimension with the same shortest vector length and the same kissing number, but different secrecy gains. Finally, we consider some cases of a question by Elkies by providing an answer for a special class of lattices assuming the conjecture of Belfiore and Sol\'e. We will also get a conditional improvement on some Gaulter's results concerning the conjecture.Comment: This paper contains the note http://arxiv.org/abs/1209.3573. However, there are several new results, including the results concerning a conjecture by Elkie

    A Classification of Unimodular Lattice Wiretap Codes in Small Dimensions

    Full text link
    Lattice coding over a Gaussian wiretap channel, where an eavesdropper listens to transmissions between a transmitter and a legitimate receiver, is considered. A new lattice invariant called the secrecy gain is used as a code design criterion for wiretap lattice codes since it was shown to characterize the confusion that a chosen lattice can cause at the eavesdropper: the higher the secrecy gain of the lattice, the more confusion. In this paper, a formula for the secrecy gain of unimodular lattices is derived. Secrecy gains of extremal odd unimodular lattices as well as unimodular lattices in dimension n, 16 \leq n \leq 23 are computed, covering the 4 extremal odd unimodular lattices and all the 111 nonextremal unimodular lattices (both odd and even) providing thus a classification of the best wiretap lattice codes coming from unimodular lattices in dimension n, 8 < n \leq 23. Finally, to permit lattice encoding via Construction A, the corresponding error correction codes are determined.Comment: 10 page

    Formally Unimodular Packings for the Gaussian Wiretap Channel

    Full text link
    This paper introduces the family of lattice-like packings, which generalizes lattices, consisting of packings possessing periodicity and geometric uniformity. The subfamily of formally unimodular (lattice-like) packings is further investigated. It can be seen as a generalization of the unimodular and isodual lattices, and the Construction A formally unimodular packings obtained from formally self-dual codes are presented. Recently, lattice coding for the Gaussian wiretap channel has been considered. A measure called secrecy function was proposed to characterize the eavesdropper's probability of correctly decoding. The aim is to determine the global maximum value of the secrecy function, called (strong) secrecy gain. We further apply lattice-like packings to coset coding for the Gaussian wiretap channel and show that the family of formally unimodular packings shares the same secrecy function behavior as unimodular and isodual lattices. We propose a universal approach to determine the secrecy gain of a Construction A formally unimodular packing obtained from a formally self-dual code. From the weight distribution of a code, we provide a necessary condition for a formally self-dual code such that its Construction A formally unimodular packing is secrecy-optimal. Finally, we demonstrate that formally unimodular packings/lattices can achieve higher secrecy gain than the best-known unimodular lattices.Comment: Accepted for publication in IEEE Transactions on Information Theory. arXiv admin note: text overlap with arXiv:2111.0143

    Achieving Secrecy Capacity of the Gaussian Wiretap Channel with Polar Lattices

    Full text link
    In this work, an explicit wiretap coding scheme based on polar lattices is proposed to achieve the secrecy capacity of the additive white Gaussian noise (AWGN) wiretap channel. Firstly, polar lattices are used to construct secrecy-good lattices for the mod-Λs\Lambda_s Gaussian wiretap channel. Then we propose an explicit shaping scheme to remove this mod-Λs\Lambda_s front end and extend polar lattices to the genuine Gaussian wiretap channel. The shaping technique is based on the lattice Gaussian distribution, which leads to a binary asymmetric channel at each level for the multilevel lattice codes. By employing the asymmetric polar coding technique, we construct an AWGN-good lattice and a secrecy-good lattice with optimal shaping simultaneously. As a result, the encoding complexity for the sender and the decoding complexity for the legitimate receiver are both O(N logN log(logN)). The proposed scheme is proven to be semantically secure.Comment: Submitted to IEEE Trans. Information Theory, revised. This is the authors' own version of the pape
    • …
    corecore