265 research outputs found

    Pair programming and the re-appropriation of individual tools for collaborative software development

    Get PDF
    Although pair programming is becoming more prevalent in software development, and a number of reports have been written about it [10] [13], few have addressed the manner in which pairing actually takes place [12]. Even fewer consider the methods used to manage issues such as role change or the communication of complex issues. This paper highlights the way resources designed for individuals are re-appropriated and augmented by pair programmers to facilitate collaboration. It also illustrates that pair verbalisations can augment the benefits of the collocated team, providing examples from ethnographic studies of pair programmers 'in the wild'

    Framework for throughput analysis of simple reliable multicast protocol in a M2MP network

    Get PDF
    M2MP has been developed to support M2MI applications in a mostly reliable wireless network. Currently, most M2MI/M2MP applications have been developed and tested in a reliable wired network. There has been a requirement to test the M2MP in a real world environment i.e. an unreliable proximal ad-hoc wireless network of mobile devices, where devices are constantly joining and leaving the network. Also, M2MP provides unreliable multicast service. There is a requirement to build and integrate a reliable multicast layer to the M2MP implementation to provide reliable multicast service. This Master s project aims to satisfy the requirements by building a framework to test a reliable M2MP implementation in a simulated unreliable network

    Achievements, open problems and challenges for search based software testing

    Get PDF
    Search Based Software Testing (SBST) formulates testing as an optimisation problem, which can be attacked using computational search techniques from the field of Search Based Software Engineering (SBSE). We present an analysis of the SBST research agenda, focusing on the open problems and challenges of testing non-functional properties, in particular a topic we call 'Search Based Energy Testing' (SBET), Multi-objective SBST and SBST for Test Strategy Identification. We conclude with a vision of FIFIVERIFY tools, which would automatically find faults, fix them and verify the fixes. We explain why we think such FIFIVERIFY tools constitute an exciting challenge for the SBSE community that already could be within its reach

    Repairing and mechanising the JavaScript relaxed memory model

    Get PDF
    Ā© 2020 ACM. Modern JavaScript includes the SharedArrayBuffer feature, which provides access to true shared memory concurrency. SharedArrayBuffers are simple linear buffers of bytes, and the JavaScript specification defines an axiomatic relaxed memory model to describe their behaviour. While this model is heavily based on the C/C++11 model, it diverges in some key areas. JavaScript chooses to give a well-defined semantics to data-races, unlike the "undefined behaviour" of C/C++11. Moreover, the JavaScript model is mixed-size. This means that its accesses are not to discrete locations, but to (possibly overlapping) ranges of bytes. We show that the model, in violation of the design intention, does not support a compilation scheme to ARMv8 which is used in practice. We propose a correction, which also incorporates a previously proposed fix for a failure of the model to provide Sequential Consistency of Data-Race-Free programs (SC-DRF), an important correctness condition. We use model checking, in Alloy, to generate small counter-examples for these deficiencies, and investigate our correction. To accomplish this, we also develop a mixed-size extension to the existing ARMv8 axiomatic model. Guided by our Alloy experimentation, we mechanise (in Coq) the JavaScript model (corrected and uncorrected), our ARMv8 model, and, for the corrected JavaScript model, a "model-internal" SC-DRF proof and a compilation scheme correctness proof to ARMv8. In addition, we investigate a non-mixed-size subset of the corrected JavaScript model, and give proofs of compilation correctness for this subset to x86-TSO, Power, RISC-V, ARMv7, and (again) ARMv8, via the Intermediate Memory Model (IMM). As a result of our work, the JavaScript standards body (ECMA TC39) will include fixes for both issues in an upcoming edition of the specification

    Formal certification and compliance for run-time service environments

    Get PDF
    With the increased awareness of security and safety of services in on-demand distributed service provisioning (such as the recent adoption of Cloud infrastructures), certification and compliance checking of services is becoming a key element for service engineering. Existing certification techniques tend to support mainly design-time checking of service properties and tend not to support the run-time monitoring and progressive certification in the service execution environment. In this paper we discuss an approach which provides both design-time and runtime behavioural compliance checking for a services architecture, through enabling a progressive event-driven model-checking technique. Providing an integrated approach to certification and compliance is a challenge however using analysis and monitoring techniques we present such an approach for on-going compliance checking

    Achieving High Performance and High Productivity in Next Generational Parallel Programming Languages

    Get PDF
    Processor design has turned toward parallelism and heterogeneity cores to achieve performance and energy efficiency. Developers find high-level languages attractive because they use abstraction to offer productivity and portability over hardware complexities. To achieve performance, some modern implementations of high-level languages use work-stealing scheduling for load balancing of dynamically created tasks. Work-stealing is a promising approach for effectively exploiting software parallelism on parallel hardware. A programmer who uses work-stealing explicitly identifies potential parallelism and the runtime then schedules work, keeping otherwise idle hardware busy while relieving overloaded hardware of its burden. However, work-stealing comes with substantial overheads. These overheads arise as a necessary side effect of the implementation and hamper parallel performance. In addition to runtime-imposed overheads, there is a substantial cognitive load associated with ensuring that parallel code is data-race free. This dissertation explores the overheads associated with achieving high performance parallelism in modern high-level languages. My thesis is that, by exploiting existing underlying mechanisms of managed runtimes; and by extending existing language design, high-level languages will be able to deliver productivity and parallel performance at the levels necessary for widespread uptake. The key contributions of my thesis are: 1) a detailed analysis of the key sources of overhead associated with a work-stealing runtime, namely sequential and dynamic overheads; 2) novel techniques to reduce these overheads that use rich features of managed runtimes such as the yieldpoint mechanism, on-stack replacement, dynamic code-patching, exception handling support, and return barriers; 3) comprehensive analysis of the resulting benefits, which demonstrate that work-stealing overheads can be significantly reduced, leading to substantial performance improvements; and 4) a small set of language extensions that achieve both high performance and high productivity with minimal programmer effort. A managed runtime forms the backbone of any modern implementation of a high-level language. Managed runtimes enjoy the benefits of a long history of research and their implementations are highly optimized. My thesis demonstrates that converging these highly optimized features together with the expressiveness of high-level languages, gives further hope for achieving high performance and high productivity on modern parallel hardwar

    Dynamic Assignment of Scoped Memory Regions in the Translation of Java to Real-Time Java

    Get PDF
    Advances in middleware, operating systems, and popular, general-purpose languages have brought the ideal of reasonably-bound execution time closer to developers who need such assurances for real-time and embedded systems applications. Extensions to the Java libraries and virtual machine have been proposed in a real-time Java standard, which provides for speciļ¬cation of release times, execution costs, and deadlines for a restricted class of threads. To use such features, the programmer is required to use unwieldy code constructs to create region-like areas of storage, associate them with execution scopes, and allocate objects from them. Further, the developer must ensure that they do not violate strict inter-region reference rules. Unfortunately, it is difļ¬cult to determine manually how to map object instantiations to execution scopes. Moreover, if ordinary Java code is modiļ¬ed to effect instantiations in scopes, the resulting code is difļ¬cult to read, maintain, and reuse. We present a dynamic approach to determining proper placement of objects within scope-bounded regions, and we employ a procedure that utilizes aspect-oriented programming to instrument the original program, realizing the programā€™s scoped memory concerns in a modular fashion. Using this approach, Java programs can be converted into region-aware Java programs automatically
    • ā€¦
    corecore