168 research outputs found

    Hybrid Collaborative Filtering with Autoencoders

    Get PDF
    Collaborative Filtering aims at exploiting the feedback of users to provide personalised recommendations. Such algorithms look for latent variables in a large sparse matrix of ratings. They can be enhanced by adding side information to tackle the well-known cold start problem. While Neu-ral Networks have tremendous success in image and speech recognition, they have received less attention in Collaborative Filtering. This is all the more surprising that Neural Networks are able to discover latent variables in large and heterogeneous datasets. In this paper, we introduce a Collaborative Filtering Neural network architecture aka CFN which computes a non-linear Matrix Factorization from sparse rating inputs and side information. We show experimentally on the MovieLens and Douban dataset that CFN outper-forms the state of the art and benefits from side information. We provide an implementation of the algorithm as a reusable plugin for Torch, a popular Neural Network framework

    Selective Sampling with Drift

    Full text link
    Recently there has been much work on selective sampling, an online active learning setting, in which algorithms work in rounds. On each round an algorithm receives an input and makes a prediction. Then, it can decide whether to query a label, and if so to update its model, otherwise the input is discarded. Most of this work is focused on the stationary case, where it is assumed that there is a fixed target model, and the performance of the algorithm is compared to a fixed model. However, in many real-world applications, such as spam prediction, the best target function may drift over time, or have shifts from time to time. We develop a novel selective sampling algorithm for the drifting setting, analyze it under no assumptions on the mechanism generating the sequence of instances, and derive new mistake bounds that depend on the amount of drift in the problem. Simulations on synthetic and real-world datasets demonstrate the superiority of our algorithms as a selective sampling algorithm in the drifting setting

    Scaling Graph-based Semi Supervised Learning to Large Number of Labels Using Count-Min Sketch

    Full text link
    Graph-based Semi-supervised learning (SSL) algorithms have been successfully used in a large number of applications. These methods classify initially unlabeled nodes by propagating label information over the structure of graph starting from seed nodes. Graph-based SSL algorithms usually scale linearly with the number of distinct labels (m), and require O(m) space on each node. Unfortunately, there exist many applications of practical significance with very large m over large graphs, demanding better space and time complexity. In this paper, we propose MAD-SKETCH, a novel graph-based SSL algorithm which compactly stores label distribution on each node using Count-min Sketch, a randomized data structure. We present theoretical analysis showing that under mild conditions, MAD-SKETCH can reduce space complexity at each node from O(m) to O(log m), and achieve similar savings in time complexity as well. We support our analysis through experiments on multiple real world datasets. We observe that MAD-SKETCH achieves similar performance as existing state-of-the-art graph- based SSL algorithms, while requiring smaller memory footprint and at the same time achieving up to 10x speedup. We find that MAD-SKETCH is able to scale to datasets with one million labels, which is beyond the scope of existing graph- based SSL algorithms.Comment: 9 page

    Efficient Algorithms and Error Analysis for the Modified Nystrom Method

    Full text link
    Many kernel methods suffer from high time and space complexities and are thus prohibitive in big-data applications. To tackle the computational challenge, the Nystr\"om method has been extensively used to reduce time and space complexities by sacrificing some accuracy. The Nystr\"om method speedups computation by constructing an approximation of the kernel matrix using only a few columns of the matrix. Recently, a variant of the Nystr\"om method called the modified Nystr\"om method has demonstrated significant improvement over the standard Nystr\"om method in approximation accuracy, both theoretically and empirically. In this paper, we propose two algorithms that make the modified Nystr\"om method practical. First, we devise a simple column selection algorithm with a provable error bound. Our algorithm is more efficient and easier to implement than and nearly as accurate as the state-of-the-art algorithm. Second, with the selected columns at hand, we propose an algorithm that computes the approximation in lower time complexity than the approach in the previous work. Furthermore, we prove that the modified Nystr\"om method is exact under certain conditions, and we establish a lower error bound for the modified Nystr\"om method.Comment: 9-page paper plus appendix. In Proceedings of the 17th International Conference on Artificial Intelligence and Statistics (AISTATS) 2014, Reykjavik, Iceland. JMLR: W&CP volume 3
    corecore