170 research outputs found

    Initial Semantics for Strengthened Signatures

    Get PDF
    We give a new general definition of arity, yielding the companion notions of signature and associated syntax. This setting is modular in the sense requested by Ghani and Uustalu: merging two extensions of syntax corresponds to building an amalgamated sum. These signatures are too general in the sense that we are not able to prove the existence of an associated syntax in this general context. So we have to select arities and signatures for which there exists the desired initial monad. For this, we follow a track opened by Matthes and Uustalu: we introduce a notion of strengthened arity and prove that the corresponding signatures have initial semantics (i.e. associated syntax). Our strengthened arities admit colimits, which allows the treatment of the \lambda-calculus with explicit substitution.Comment: In Proceedings FICS 2012, arXiv:1202.317

    Strategic Issues, Problems and Challenges in Inductive Theorem Proving

    Get PDF
    Abstract(Automated) Inductive Theorem Proving (ITP) is a challenging field in automated reasoning and theorem proving. Typically, (Automated) Theorem Proving (TP) refers to methods, techniques and tools for automatically proving general (most often first-order) theorems. Nowadays, the field of TP has reached a certain degree of maturity and powerful TP systems are widely available and used. The situation with ITP is strikingly different, in the sense that proving inductive theorems in an essentially automatic way still is a very challenging task, even for the most advanced existing ITP systems. Both in general TP and in ITP, strategies for guiding the proof search process are of fundamental importance, in automated as well as in interactive or mixed settings. In the paper we will analyze and discuss the most important strategic and proof search issues in ITP, compare ITP with TP, and argue why ITP is in a sense much more challenging. More generally, we will systematically isolate, investigate and classify the main problems and challenges in ITP w.r.t. automation, on different levels and from different points of views. Finally, based on this analysis we will present some theses about the state of the art in the field, possible criteria for what could be considered as substantial progress, and promising lines of research for the future, towards (more) automated ITP

    Contents EATCS bulletin number 64, February 1998

    Get PDF

    A Generic Library for Floating-Point Numbers and Its Application to Exact Computing

    Get PDF
    International audienceIn this paper we present a general library to reason about floating-point numbers within the Coq system. Most of the results of the library are proved for an arbitrary floating-point format and an arbitrary base. A special emphasis has been put on proving properties for exact computing, i.e. computing without rounding errors

    A Machine Checked Model of Idempotent MGU Axioms For Lists of Equational Constraints

    Full text link
    We present formalized proofs verifying that the first-order unification algorithm defined over lists of satisfiable constraints generates a most general unifier (MGU), which also happens to be idempotent. All of our proofs have been formalized in the Coq theorem prover. Our proofs show that finite maps produced by the unification algorithm provide a model of the axioms characterizing idempotent MGUs of lists of constraints. The axioms that serve as the basis for our verification are derived from a standard set by extending them to lists of constraints. For us, constraints are equalities between terms in the language of simple types. Substitutions are formally modeled as finite maps using the Coq library Coq.FSets.FMapInterface. Coq's method of functional induction is the main proof technique used in proving many of the axioms.Comment: In Proceedings UNIF 2010, arXiv:1012.455
    corecore