115,381 research outputs found

    Weak Mixing Angle and Proton Stability in F-theory GUT

    Full text link
    It is pointed out that a class of flipped SU(5) models based on F-theory naturally explains the gauge coupling unification. It is because the group SU(5) x U(1)_X is embedded in SO(10) and E_8. To prohibit the dimension 4 and 5 proton decay processes, the structure group should be SU(3) or smaller. Extra heavy vector-like pairs of {5_{-2},5*_2} except only one pair of Higgs should be also disallowed, because they could induce the unwanted dimension 5 proton decays. We construct a simple global F-theory model considering these points. To maintain sin^2 theta_W^0 = 3/8 at the GUT scale, the fluxes are turned-on only on the flavor branes.Comment: 22 page

    How a Non-hierarchical Neutrino Mass Matrix Can Arise

    Full text link
    One puzzle of neutrino masses and mixings is that they do not exhibit the kind of strong "hierarchy" that is found for the quarks and charged leptons. Neutrino mass ratios and mixing angles are not small. A possible reason for this is proposed here. It is based on the fact that typical realistic grand unified models contain particles with unification-scale masses which, when integrated out, can yield a neutrino mass matrix that is not of the standard seesaw form.Comment: 12 pages, 5 figures, LaTe

    A Convenient Synthesis of 14C-Anthralin

    Get PDF
    Anthralin [1,8-dihydroxy-9(10H)-anthracenone] is among the most widely used drugs in the topical treatment of psoriasis1). However, not much is known concerning its mode of action at the molecular level, although a variety of cellular targets have been implicated both in the main and side effects of anthralin2 ). In particular, the interaction of anthralin with proteins has long been recognized to occur3 , 4 ) and there has been renewed interest in this topic, mostly directed toward the investigation whether enzyme inhibition by anthralin is related to oxygen radicalmediated damage of proteins5 ) . In order to gain a more profound understanding of the interaction between this drug and cellular targets, anthralin labelled with a non-exchangeable radioisotope in a suitable position was highly desirable. Furthermore, this labelled compound might serve as a useful starting material for the synthesis of analogues labelled in the anthrone nucleus. Since structural modification of anthralin has provided compounds with improved biological activity6 '7), labelled compounds are required for studies on skin penetration and metabolism of these future drugs. Although routes to 14C-anthralin have already been described8,9), each of these methods suffers from too many synthetic steps, or the use of hazardous 14C-sources1 ) . In this paper, we describe a short and efficient synthesis of l,8-dihydroxy-[10-14C]-9(10H)-anthracenone

    Lifting a Realistic SO(10) Grand Unified Model to Five Dimensions

    Get PDF
    It has been shown recently that the problem of rapid proton decay induced by dimension five operators arising from the exchange of colored Higgsinos can be simply avoided in grand unified models where a fifth spatial dimension is compactified on an orbifold. Here we demonstrate that this idea can be used to solve the Higgsino-mediated proton decay problem in any realistic SO(10) model by lifting that model to five dimensions. A particular SO(10) model that has been proposed to explain the pattern of quark and lepton masses and mixings is used as an example. The idea is to break the SO(10) down to the Pati-Salam symmetry by the orbifold boundary conditions. The entire four-dimensional SO(10) model is placed on the physical SO(10) brane except for the gauge fields, the 45 and a single 10 of Higgs fields, which are placed in the five-dimensional bulk. The structure of the Higgs superpotential can be somewhat simplified in doing so, while the Yukawa superpotential and mass matrices derived from it remain essentially unaltered.Comment: 17 pages, version to be published in Phys. Rev. D with expanded discussion of the suppression of dim-5 proton decay operator

    Non-universal Z' from SO(10) GUTs with vector-like family and the origin of neutrino masses

    Full text link
    A ZZ' gauge boson with mass around the (few) TeV scale is a popular example of physics beyond the Standard Model (SM) and can be a fascinating remnant of a Grand Unified Theory (GUT). Recently, ZZ' models with non-universal couplings to the SM fermions due to extra vector-like states have received attention as potential explanations of the present RKR_K, RKR_{K^{\ast}} anomalies; this includes GUT model proposals based on the SO(10)\mathrm{SO}(10) group. In this paper we further develop GUT models with a flavour non-universal low scale ZZ' and clarify several outstanding issues within them. First, we successfully incorporate a realistic neutrino sector (with linear and/or inverse low scale seesaw mechanism), which was so far a missing ingredient. Second, we investigate in detail their compatibility with the RKR_K, RKR_{K^{\ast}} anomalies; we find that the anomalies do not have a consistent explanation within such models. Third, we demonstrate that these models have other compelling phenomenological features; we study the correlations between the flavour violating processes of μ3e\mu\to 3e and μ\mu-ee conversion in a muonic atom, showing how a GUT imprint could manifest itself in experiments.Comment: Revised version, published in NPB. New material, general conclusions unchanged. 30 pages, 4 figures, 2 table

    B-L Violating Nucleon Decay and GUT Scale Baryogenesis in SO(10)

    Full text link
    We show that grand unified theories based on SO(10) generate naturally the next-to-leading baryon number violating operators of dimension seven. These operators, which violate B-L, lead to unconventional decays of the nucleon such as n -> e^-K^+, e^- \pi^+ and p -> \nu \pi^+. In two-step breaking schemes of non-supersymmetric SO(10), nucleon lifetime for decays into these modes is found to be within reach of experiments. We also identify supersymmetric scenarios where these decays may be accessible, consistent with gauge coupling unification. Further, we show that the (B-L)-asymmetry generated in the decays of GUT scale scalar bosons and/or gauge bosons can explain consistently the observed baryon asymmetry of the universe. The induced (B-L)-asymmetry is sphaleron-proof, and survives down to the weak scale without being erased by the electroweak interactions. This mechanism works efficiently in a large class of non-SUSY and SUSY SO(10) models, with either a 126 or a 16 Higgs field employed for rank reduction. In minimal models the induced baryon asymmetry is tightly connected to the masses of quarks, leptons and neutrinos and is found to be compatible with observations.Comment: 26 pages, 9 figure

    Preparation of New 2,3-Diphenylpropenoic Acid Esters – Good Yields Even for the More Hindered Z Isomers

    Get PDF
    The potassium salt of E- and Z-2,3-diphenylpropenoic acids prepared in situ could be esterified efficiently in DMSO with the appropriate alkyl halides at room temperature. In this way 10 previously undescribed esters of these acids were synthesised and characterised. Excellent yields were observed for most of the E isomers and the more hindered Z esters were also obtained in good yields, far better than those obtained applying the classical acid-catalysed esterification reaction

    Supersymmetric Grand Unified Models without Adjoint Higgs Fields

    Get PDF
    We discuss two classes of supersymmetric grand unified theories based on extended gauge groups SO(10)×SO(10)SO(10) \times SO(10) and SO(10)×SO(10)×SO(10)SO(10)\times SO(10)\times SO(10). Effective adjoint fields of each gauge group SO(10) are argued to be formed from combining two Higgs fields in fundamental representation of the extended gauge groups, one obtaining its VEV along the diagonal SO(10)DSO(10)_D direction and the other acquiring its VEV along the diagonal SU(5)D×U(1)DSU(5)_D\times U(1)_D or its subgroup direction. Thus experimentally acceptable fermion mass matrices, such as Georgi-Jarlskog ansatz, with successful GUT mass relations can be constructed in these theories.Comment: 23 pages, 1 figure and 3 table

    Luminosity density estimation from redshift surveys and the mass density of the Universe

    Get PDF
    In most direct estimates of the mass density (visible or dark) of the Universe, a central input parameter is the luminosity density of the Universe. Here we consider the measurement of this luminosity density from red-shift surveys, as a function of the yet undetermined characteristic scale R_H at which the spatial distribution of visible matter tends to a well defined homogeneity. Making the canonical assumption that the cluster mass to luminosity ratio M/L is the universal one, we can estimate the total mass density as a function \Omega_m(R_H,M/L). Taking the highest estimated cluster value M/L ~300h and a conservative lower limit R_H > 20 Mpc/h, we obtain the upper bound \Omega_m < 0.1 . We note that for values of the homogeneity scale R_H in the range R_H ~ (90 +/- 45) hMpc, the value of \Omega_m may be compatible with the nucleosynthesis inferred density in baryons.Comment: 16 pages, latex, no figures. To be published in Astrophysical Journal Letter
    corecore