58,078 research outputs found

    Perceiving Unknown in Dark from Perspective of Cell Vibration

    Full text link
    Low light very likely leads to the degradation of image quality and even causes visual tasks' failure. Existing image enhancement technologies are prone to over-enhancement or color distortion, and their adaptability is fairly limited. In order to deal with these problems, we utilise the mechanism of biological cell vibration to interpret the formation of color images. In particular, we here propose a simple yet effective cell vibration energy (CVE) mapping method for image enhancement. Based on a hypothetical color-formation mechanism, our proposed method first uses cell vibration and photoreceptor correction to determine the photon flow energy for each color channel, and then reconstructs the color image with the maximum energy constraint of the visual system. Photoreceptor cells can adaptively adjust the feedback from the light intensity of the perceived environment. Based on this understanding, we here propose a new Gamma auto-adjustment method to modify Gamma values according to individual images. Finally, a fusion method, combining CVE and Gamma auto-adjustment (CVE-G), is proposed to reconstruct the color image under the constraint of lightness. Experimental results show that the proposed algorithm is superior to six state of the art methods in avoiding over-enhancement and color distortion, restoring the textures of dark areas and reproducing natural colors. The source code will be released at https://github.com/leixiaozhou/CVE-G-Resource-Base.Comment: 13 pages, 17 figure

    Fusion of Urban TanDEM-X raw DEMs using variational models

    Get PDF
    Recently, a new global Digital Elevation Model (DEM) with pixel spacing of 0.4 arcseconds and relative height accuracy finer than 2m for flat areas (slopes 20%) was created through the TanDEM-X mission. One important step of the chain of global DEM generation is to mosaic and fuse multiple raw DEM tiles to reach the target height accuracy. Currently, Weighted Averaging (WA) is applied as a fast and simple method for TanDEM-X raw DEM fusion in which the weights are computed from height error maps delivered from the Interferometric TanDEM-X Processor (ITP). However, evaluations show that WA is not the perfect DEM fusion method for urban areas especially in confrontation with edges such as building outlines. The main focus of this paper is to investigate more advanced variational approaches such as TV-L1 and Huber models. Furthermore, we also assess the performance of variational models for fusing raw DEMs produced from data takes with different baseline configurations and height of ambiguities. The results illustrate the high efficiency of variational models for TanDEM-X raw DEM fusion in comparison to WA. Using variational models could improve the DEM quality by up to 2m particularly in inner-city subsets.Comment: This is the pre-acceptance version, to read the final version, please go to IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing on IEEE Xplor

    In-Situ Defect Detection in Laser Powder Bed Fusion by Using Thermography and Optical Tomography—Comparison to Computed Tomography

    Get PDF
    Among additive manufacturing (AM) technologies, the laser powder bed fusion (L-PBF) is one of the most important technologies to produce metallic components. The layer-wise build-up of components and the complex process conditions increase the probability of the occurrence of defects. However, due to the iterative nature of its manufacturing process and in contrast to conventional manufacturing technologies such as casting, L-PBF offers unique opportunities for in-situ monitoring. In this study, two cameras were successfully tested simultaneously as a machine manufacturer independent process monitoring setup: a high-frequency infrared camera and a camera for long time exposure, working in the visible and infrared spectrum and equipped with a near infrared filter. An AISI 316L stainless steel specimen with integrated artificial defects has been monitored during the build. The acquired camera data was compared to data obtained by computed tomography. A promising and easy to use examination method for data analysis was developed and correlations between measured signals and defects were identified. Moreover, sources of possible data misinterpretation were specified. Lastly, attempts for automatic data analysis by data integration are presented
    corecore