100 research outputs found

    Coresets-Methods and History: A Theoreticians Design Pattern for Approximation and Streaming Algorithms

    Get PDF
    We present a technical survey on the state of the art approaches in data reduction and the coreset framework. These include geometric decompositions, gradient methods, random sampling, sketching and random projections. We further outline their importance for the design of streaming algorithms and give a brief overview on lower bounding techniques

    Scalable k-Means Clustering via Lightweight Coresets

    Full text link
    Coresets are compact representations of data sets such that models trained on a coreset are provably competitive with models trained on the full data set. As such, they have been successfully used to scale up clustering models to massive data sets. While existing approaches generally only allow for multiplicative approximation errors, we propose a novel notion of lightweight coresets that allows for both multiplicative and additive errors. We provide a single algorithm to construct lightweight coresets for k-means clustering as well as soft and hard Bregman clustering. The algorithm is substantially faster than existing constructions, embarrassingly parallel, and the resulting coresets are smaller. We further show that the proposed approach naturally generalizes to statistical k-means clustering and that, compared to existing results, it can be used to compute smaller summaries for empirical risk minimization. In extensive experiments, we demonstrate that the proposed algorithm outperforms existing data summarization strategies in practice.Comment: To appear in the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD

    Coreset Markov Chain Monte Carlo

    Full text link
    A Bayesian coreset is a small, weighted subset of data that replaces the full dataset during inference in order to reduce computational cost. However, state of the art methods for tuning coreset weights are expensive, require nontrivial user input, and impose constraints on the model. In this work, we propose a new method -- Coreset MCMC -- that simulates a Markov chain targeting the coreset posterior, while simultaneously updating the coreset weights using those same draws. Coreset MCMC is simple to implement and tune, and can be used with any existing MCMC kernel. We analyze Coreset MCMC in a representative setting to obtain key insights about the convergence behaviour of the method. Empirical results demonstrate that Coreset MCMC provides higher quality posterior approximations and reduced computational cost compared with other coreset construction methods. Further, compared with other general subsampling MCMC methods, we find that Coreset MCMC has a higher sampling efficiency with competitively accurate posterior approximations

    A Novel Sequential Coreset Method for Gradient Descent Algorithms

    Full text link
    A wide range of optimization problems arising in machine learning can be solved by gradient descent algorithms, and a central question in this area is how to efficiently compress a large-scale dataset so as to reduce the computational complexity. {\em Coreset} is a popular data compression technique that has been extensively studied before. However, most of existing coreset methods are problem-dependent and cannot be used as a general tool for a broader range of applications. A key obstacle is that they often rely on the pseudo-dimension and total sensitivity bound that can be very high or hard to obtain. In this paper, based on the ''locality'' property of gradient descent algorithms, we propose a new framework, termed ''sequential coreset'', which effectively avoids these obstacles. Moreover, our method is particularly suitable for sparse optimization whence the coreset size can be further reduced to be only poly-logarithmically dependent on the dimension. In practice, the experimental results suggest that our method can save a large amount of running time compared with the baseline algorithms
    corecore