452 research outputs found

    One Objective to Rule Them All: A Maximization Objective Fusing Estimation and Planning for Exploration

    Full text link
    In online reinforcement learning (online RL), balancing exploration and exploitation is crucial for finding an optimal policy in a sample-efficient way. To achieve this, existing sample-efficient online RL algorithms typically consist of three components: estimation, planning, and exploration. However, in order to cope with general function approximators, most of them involve impractical algorithmic components to incentivize exploration, such as optimization within data-dependent level-sets or complicated sampling procedures. To address this challenge, we propose an easy-to-implement RL framework called \textit{Maximize to Explore} (\texttt{MEX}), which only needs to optimize \emph{unconstrainedly} a single objective that integrates the estimation and planning components while balancing exploration and exploitation automatically. Theoretically, we prove that \texttt{MEX} achieves a sublinear regret with general function approximations for Markov decision processes (MDP) and is further extendable to two-player zero-sum Markov games (MG). Meanwhile, we adapt deep RL baselines to design practical versions of \texttt{MEX}, in both model-free and model-based manners, which can outperform baselines by a stable margin in various MuJoCo environments with sparse rewards. Compared with existing sample-efficient online RL algorithms with general function approximations, \texttt{MEX} achieves similar sample efficiency while enjoying a lower computational cost and is more compatible with modern deep RL methods

    Sample-Efficient Multi-Agent RL: An Optimization Perspective

    Full text link
    We study multi-agent reinforcement learning (MARL) for the general-sum Markov Games (MGs) under the general function approximation. In order to find the minimum assumption for sample-efficient learning, we introduce a novel complexity measure called the Multi-Agent Decoupling Coefficient (MADC) for general-sum MGs. Using this measure, we propose the first unified algorithmic framework that ensures sample efficiency in learning Nash Equilibrium, Coarse Correlated Equilibrium, and Correlated Equilibrium for both model-based and model-free MARL problems with low MADC. We also show that our algorithm provides comparable sublinear regret to the existing works. Moreover, our algorithm combines an equilibrium-solving oracle with a single objective optimization subprocedure that solves for the regularized payoff of each deterministic joint policy, which avoids solving constrained optimization problems within data-dependent constraints (Jin et al. 2020; Wang et al. 2023) or executing sampling procedures with complex multi-objective optimization problems (Foster et al. 2023), thus being more amenable to empirical implementation

    Unified Algorithms for RL with Decision-Estimation Coefficients: No-Regret, PAC, and Reward-Free Learning

    Full text link
    Finding unified complexity measures and algorithms for sample-efficient learning is a central topic of research in reinforcement learning (RL). The Decision-Estimation Coefficient (DEC) is recently proposed by Foster et al. (2021) as a necessary and sufficient complexity measure for sample-efficient no-regret RL. This paper makes progress towards a unified theory for RL with the DEC framework. First, we propose two new DEC-type complexity measures: Explorative DEC (EDEC), and Reward-Free DEC (RFDEC). We show that they are necessary and sufficient for sample-efficient PAC learning and reward-free learning, thereby extending the original DEC which only captures no-regret learning. Next, we design new unified sample-efficient algorithms for all three learning goals. Our algorithms instantiate variants of the Estimation-To-Decisions (E2D) meta-algorithm with a strong and general model estimation subroutine. Even in the no-regret setting, our algorithm E2D-TA improves upon the algorithms of Foster et al. (2021) which require either bounding a variant of the DEC which may be prohibitively large, or designing problem-specific estimation subroutines. As applications, we recover existing and obtain new sample-efficient learning results for a wide range of tractable RL problems using essentially a single algorithm. We also generalize the DEC to give sample-efficient algorithms for all-policy model estimation, with applications for learning equilibria in Markov Games. Finally, as a connection, we re-analyze two existing optimistic model-based algorithms based on Posterior Sampling or Maximum Likelihood Estimation, showing that they enjoy similar regret bounds as E2D-TA under similar structural conditions as the DEC

    A General Framework for Sample-Efficient Function Approximation in Reinforcement Learning

    Full text link
    With the increasing need for handling large state and action spaces, general function approximation has become a key technique in reinforcement learning (RL). In this paper, we propose a general framework that unifies model-based and model-free RL, and an Admissible Bellman Characterization (ABC) class that subsumes nearly all Markov Decision Process (MDP) models in the literature for tractable RL. We propose a novel estimation function with decomposable structural properties for optimization-based exploration and the functional eluder dimension as a complexity measure of the ABC class. Under our framework, a new sample-efficient algorithm namely OPtimization-based ExploRation with Approximation (OPERA) is proposed, achieving regret bounds that match or improve over the best-known results for a variety of MDP models. In particular, for MDPs with low Witness rank, under a slightly stronger assumption, OPERA improves the state-of-the-art sample complexity results by a factor of dHdH. Our framework provides a generic interface to design and analyze new RL models and algorithms

    Introduction to Online Nonstochastic Control

    Full text link
    This text presents an introduction to an emerging paradigm in control of dynamical systems and differentiable reinforcement learning called online nonstochastic control. The new approach applies techniques from online convex optimization and convex relaxations to obtain new methods with provable guarantees for classical settings in optimal and robust control. The primary distinction between online nonstochastic control and other frameworks is the objective. In optimal control, robust control, and other control methodologies that assume stochastic noise, the goal is to perform comparably to an offline optimal strategy. In online nonstochastic control, both the cost functions as well as the perturbations from the assumed dynamical model are chosen by an adversary. Thus the optimal policy is not defined a priori. Rather, the target is to attain low regret against the best policy in hindsight from a benchmark class of policies. This objective suggests the use of the decision making framework of online convex optimization as an algorithmic methodology. The resulting methods are based on iterative mathematical optimization algorithms, and are accompanied by finite-time regret and computational complexity guarantees.Comment: Draft; comments/suggestions welcome at [email protected]
    • …
    corecore