16,571,677 research outputs found

    Invisible Faiths: Paganism and Religious Diversity at the University of Illinois

    Get PDF
    In this research, I seek to understand religious diversity here at the University of Illinois. Using ethnographic methods, I propose a project to interpret the ways in which cultural expectations frame the experiences of Pagan students on campus, while at the same time, also frame the ways in which the University administration views the student body as a whole. Building on preliminary research conducted in fall of 2007, this research seeks to determine the environment here at the University of Illinois for students of alternative religions. Considering a violent history against Pagans, this research takes careful account of potential risks to Pagan students and members of alternative religions. In this way, this project may also provide a foundation for future applied projects to encourage greater resources for religious diversity on campus.unpublishe

    The Asian and Asian American Experience Through Film & Personal Narrative

    Get PDF
    The primary focus of this report was to investigate trends of Asian and Asian American representation in media and pop culture, with a heavy emphasis through a Western lens. We explore the subjective and relatively objective definitions of the terms “Asian” and “Asian American” as it pertains to identity in the United States in the 21st Century. Beginning with historical context, we examined the documented records of anti-Asian legislation, influences of Asian media in mainstream pop culture, and contemporary accounts of Asians in the United States. We analyzed films that emphasized the Asian and Asian American experience through common themes such as, family, transition, American Dream, feeling out of place, model minority myth, and stigma. Additionally, we used this paper to reflect and vocalize our own experiences as individuals who identify as Asian or Asian American. We not only pondered on how the above-mentioned themes play into our lives but also considered our personal experiences as students attending Hamilton College, a predominantly white institution in upstate New York

    Structure of the Isovector Dipole Resonance in Neutron-Rich 60Ca^{60}Ca Nucleus and Direct Decay from Pygmy Resonance

    Full text link
    The structure of the isovector dipole resonance in neutron-rich calcium isotope, 60Ca^{60}Ca, has been investigated by implementing a careful treatment of the differences of neutron and proton radii in the continuum random phase approximation (RPARPA). The calculations have taken into account the current estimates of the neutron skin. The estimates of the escape widths for direct neutron decay from the pygmy dipole resonance (PDRPDR) were shown rather wide, implicating a strong coupling to the continuum. The width of the giant dipole resonance (GDRGDR) was evaluated, bringing on a detailed discussion about its microscopic structure.Comment: 13 pages, 2 figures, RevTex

    Sr_14Cu_24O_41Sr\_{14}Cu\_{24}O\_{41} : a complete model for the chain sub-system

    Full text link
    A second neighbor t−J+Vt-J+V model for the chain subsystem of the Sr_14Cu_24O_41Sr\_{14}Cu\_{24}O\_{41} has been extracted from ab-initio calculations. This model does not use periodic approximation but describes the entire chain through the use of the four-dimensional crystallographic description. Second neighbors interactions are found to be of same order than the first neighbors ones. The computed values of the second neighbors magnetic interaction are coherent with experimental estimations of the intra-dimer magnetic interactions, even if slightly smaller. The reasons of this underestimation are detailed. The computed model allowed us to understand the origin of the chain dimerisation and predicts correctly the relative occurrence of dimers and free spins. The orbitals respectively supporting the magnetic electrons and the holes have been found to be essentially supported by the copper 3d orbitals (spins) and the surrounding oxygen 2p2p orbitals (holes), thus giving a strong footing to the existence of Zhang-Rice singlets

    Observation of the TeV gamma-ray source MGRO J1908+06 with ARGO-YBJ

    Get PDF
    The extended gamma ray source MGRO J1908+06, discovered by the Milagro air shower detector in 2007, has been observed for about 4 years by the ARGO-YBJ experiment at TeV energies, with a statistical significance of 6.2 standard deviations. The peak of the signal is found at a position consistent with the pulsar PSR J1907+0602. Parametrizing the source shape with a two-dimensional Gauss function we estimate an extension \sigma = 0.49 \pm 0.22 degrees, consistent with a previous measurement by the Cherenkov Array H.E.S.S.. The observed energy spectrum is dN/dE = 6.1 \pm 1.4 \times 10^-13 (E/4 TeV)^{-2.54 \pm 0.36} photons cm^-2 s^-1 TeV^-1, in the energy range 1-20 TeV. The measured gamma ray flux is consistent with the results of the Milagro detector, but is 2-3 times larger than the flux previously derived by H.E.S.S. at energies of a few TeV. The continuity of the Milagro and ARGO-YBJ observations and the stable excess rate observed by ARGO-YBJ along 4 years of data taking support the identification of MGRO J1908+06 as the steady powerful TeV pulsar wind nebula of PSR J1907+0602, with an integrated luminosity above 1 TeV about 1.8 times the Crab Nebula luminosity.Comment: 6 pages, accepted for pubblication by ApJ. Replaced to correct the author lis

    DNA Renaturation at the Water-Phenol Interface

    Get PDF
    We study DNA adsorption and renaturation in a water-phenol two-phase system, with or without shaking. In very dilute solutions, single-stranded DNA is adsorbed at the interface in a salt-dependent manner. At high salt concentrations the adsorption is irreversible. The adsorption of the single-stranded DNA is specific to phenol and relies on stacking and hydrogen bonding. We establish the interfacial nature of a DNA renaturation at a high salt concentration. In the absence of shaking, this reaction involves an efficient surface diffusion of the single-stranded DNA chains. In the presence of a vigorous shaking, the bimolecular rate of the reaction exceeds the Smoluchowski limit for a three-dimensional diffusion-controlled reaction. DNA renaturation in these conditions is known as the Phenol Emulsion Reassociation Technique or PERT. Our results establish the interfacial nature of PERT. A comparison of this interfacial reaction with other approaches shows that PERT is the most efficient technique and reveals similarities between PERT and the renaturation performed by single-stranded nucleic acid binding proteins. Our results lead to a better understanding of the partitioning of nucleic acids in two-phase systems, and should help design improved extraction procedures for damaged nucleic acids. We present arguments in favor of a role of phenol and water-phenol interface in prebiotic chemistry. The most efficient renaturation reactions (in the presence of condensing agents or with PERT) occur in heterogeneous systems. This reveals the limitations of homogeneous approaches to the biochemistry of nucleic acids. We propose a heterogeneous approach to overcome the limitations of the homogeneous viewpoint

    The Making of the Standard Model

    Full text link
    This is the edited text of a talk given at CERN on Septembr 16, 2003, as part of a celebration of the 30th anniversary of the discovery of neutral currents and the 20th anniversary of the discovery of the W and Z particles.Comment: 21 page

    High pT leading hadron suppression in nuclear collisions at sqrt(s_NN) = 20 -- 200 GeV: data versus parton energy loss models

    Full text link
    Experimental results on high transverse momentum (leading) hadron spectra in nucleus-nucleus collisions in the range sqrt(s_NN) = 20 -- 200 GeV are reviewed with an emphasis on the observed suppression compared to free space production in proton-proton collisions at the corresponding center-of-mass energies. The transverse-momentum and collision-energy (but seemingly not the in-medium path length) dependence of the experimental suppression factors measured in central collisions is consistent with the expectations of final-state non-Abelian parton energy loss in a dense QCD medium.Comment: Two typos correcte

    Electronic structure of the Sr0.4Ca13.6Cu24O41Sr_{0.4}Ca_{13.6}Cu_{24}O_{41} incommensurate compound

    Full text link
    We extracted, from strongly-correlated ab-initio calculations, a complete model for the chain subsystem of the Sr0.4Ca13.6Cu24O41Sr_{0.4}Ca_{13.6}Cu_{24}O_{41} incommensurate compound. A second neighbor t−J+Vt-J+V model has been determined as a function of the fourth crystallographic parameter τ\tau, for both low and room temperature crystallographic structures. The analysis of the obtained model shows the crucial importance of the structural modulations on the electronic structure through the on-site energies and the magnetic interactions. The structural distortions are characterized by their long range effect on the cited parameters that hinder the reliability of analyses such as BVS. One of the most striking results is the existence of antiferromagnetic nearest-neighbor interactions for metal-ligand-metal angles of 90∘90^\circ. A detailed analysis of the electron localization and spin arrangement is presented as a function of the chain to ladder hole transfer and of the temperature. The obtained spin arrangement is in agreement with antiferromagnetic correlations in the chain direction at low temperature

    Phenomenological analysis connecting proton-proton and antiproton-proton elastic scattering

    Full text link
    Based on the behavior of the elastic scattering data, we introduce an almost model-independent parametrization for the imaginary part of the scattering amplitude, with the energy and momentum transfer dependences inferred on empirical basis and selected by rigorous theorems and bounds from axiomatic quantum field theory. The corresponding real part is analytically evaluated by means of dispersion relations, allowing connections between particle-particle and particle-antiparticle scattering. Simultaneous fits to proton-proton and antiproton-proton experimental data in the forward direction and also including data beyond the forward direction, lead to a predictive formalism in both energy and momentum transfer. We compare our extrapolations with predictions from some popular models and discuss the applicability of the results in the normalization of elastic rates that can be extracted from present and future accelerator experiments (Tevatron, RHIC and LHC).Comment: 17 pages, 17 figures, to appear in Eur. Phys. J.
    • 

    corecore