1,281,574 research outputs found

    Structural and electronic properties of Si/Ge nanoparticles

    Full text link
    Results of a theoretical study of the electronic properties of (Si)Ge and (Ge)Si core/shell nanoparticles, homogeneous SiGe clusters, and Ge∣|Si clusters with an interphase separating the Si and Ge atoms are presented. In general, (Si)Ge particles are more stable than (Ge)Si ones, and SiGe systems are more stable than Ge∣|Si ones. It is found that the frontier orbitals, that dictate the optical properties, are localized to the surface, meaning that saturating dangling bonds on the surface with ligands may influence the optical properties significantly. In the central parts we identify a weak tendency for the Si atoms to accept electrons, whereas Ge atoms donate electrons.Comment: To appear in Phys. Rev.

    Thermodynamically stable lithium silicides and germanides from density-functional theory calculations

    Full text link
    Density-functional-theory (DFT) calculations have been performed on the Li-Si and Li-Ge systems. Lithiated Si and Ge, including their metastable phases, play an important technological r\^ole as Li-ion battery (LIB) anodes. The calculations comprise structural optimisations on crystal structures obtained by swapping atomic species to Li-Si and Li-Ge from the X-Y structures in the International Crystal Structure Database, where X={Li,Na,K,Rb,Cs} and Y={Si,Ge,Sn,Pb}. To complement this at various Li-Si and Li-Ge stoichiometries, ab initio random structure searching (AIRSS) was also performed. Between the ground-state stoichiometries, including the recently found Li17_{17}Si4_{4} phase, the average voltages were calculated, indicating that germanium may be a safer alternative to silicon anodes in LIB, due to its higher lithium insertion voltage. Calculations predict high-density Li1_1Si1_1 and Li1_1Ge1_1 P4/mmmP4/mmm layered phases which become the ground state above 2.5 and 5 GPa respectively and reveal silicon and germanium's propensity to form dumbbells in the Lix_xSi, x=2.33βˆ’3.25x=2.33-3.25 stoichiometry range. DFT predicts the stability of the Li11_{11}Ge6_6 CmmmCmmm, Li12_{12}Ge7_7 PnmaPnma and Li7_7Ge3_3 P3212P32_12 phases and several new Li-Ge compounds, with stoichiometries Li5_5Ge2_2, Li13_{13}Ge5_5, Li8_8Ge3_3 and Li13_{13}Ge4_4.Comment: 10 pages, 5 figure

    Thermoelectric transport in strained Si and Si/Ge heterostructures

    Full text link
    The anisotropic thermoelectric transport properties of bulk silicon strained in [111]-direction were studied by detailed first-principles calculations focussing on a possible enhancement of the power factor. Electron as well as hole doping were examined in a broad doping and temperature range. At low temperature and low doping an enhancement of the power factor was obtained for compressive and tensile strain in the electron-doped case and for compressive strain in the hole-doped case. For the thermoelectrically more important high temperature and high doping regime a slight enhancement of the power factor was only found under small compressive strain with the power factor overall being robust against applied strain. To extend our findings the anisotropic thermoelectric transport of an [111]-oriented Si/Ge superlattice was investigated. Here, the cross-plane power factor under hole-doping was drastically suppressed due to quantum-well effects, while under electron-doping an enhanced power factor was found. With that, we state a figure of merit of ZT=0.2=0.2 and ZT=1.4=1.4 at T=\unit[300]{K} and T=\unit[900]{K} for the electron-doped [111]-oriented Si/Ge superlattice. All results are discussed in terms of band structure features

    Surface dangling bond states and band-lineups in hydrogen-terminated Si, Ge, and Ge/Si nanowires

    Full text link
    We report an ab initio study of the electronic properties of surface dangling-bond (SDB) states in hydrogen-terminated Si and Ge nanowires with diameters between 1 and 2 nm, Ge/Si nanowire heterostructures, and Si and Ge (111) surfaces. We find that the charge transition levels e(+/-) of SDB states behave as a common energy reference among Si and Ge wires and Si/Ge heterostructures, at 4.3 +/- 0.1 eV below the vacuum level. Calculations of e(+/-) for isolated atoms indicate that this nearly constant value is a periodic-table atomic property.Comment: 4 pages, 5 figures, two-column forma
    • …
    corecore