254,498 research outputs found
FraudDroid: Automated Ad Fraud Detection for Android Apps
Although mobile ad frauds have been widespread, state-of-the-art approaches
in the literature have mainly focused on detecting the so-called static
placement frauds, where only a single UI state is involved and can be
identified based on static information such as the size or location of ad
views. Other types of fraud exist that involve multiple UI states and are
performed dynamically while users interact with the app. Such dynamic
interaction frauds, although now widely spread in apps, have not yet been
explored nor addressed in the literature. In this work, we investigate a wide
range of mobile ad frauds to provide a comprehensive taxonomy to the research
community. We then propose, FraudDroid, a novel hybrid approach to detect ad
frauds in mobile Android apps. FraudDroid analyses apps dynamically to build UI
state transition graphs and collects their associated runtime network traffics,
which are then leveraged to check against a set of heuristic-based rules for
identifying ad fraudulent behaviours. We show empirically that FraudDroid
detects ad frauds with a high precision (93%) and recall (92%). Experimental
results further show that FraudDroid is capable of detecting ad frauds across
the spectrum of fraud types. By analysing 12,000 ad-supported Android apps,
FraudDroid identified 335 cases of fraud associated with 20 ad networks that
are further confirmed to be true positive results and are shared with our
fellow researchers to promote advanced ad fraud detectionComment: 12 pages, 10 figure
Android Malware Clustering through Malicious Payload Mining
Clustering has been well studied for desktop malware analysis as an effective
triage method. Conventional similarity-based clustering techniques, however,
cannot be immediately applied to Android malware analysis due to the excessive
use of third-party libraries in Android application development and the
widespread use of repackaging in malware development. We design and implement
an Android malware clustering system through iterative mining of malicious
payload and checking whether malware samples share the same version of
malicious payload. Our system utilizes a hierarchical clustering technique and
an efficient bit-vector format to represent Android apps. Experimental results
demonstrate that our clustering approach achieves precision of 0.90 and recall
of 0.75 for Android Genome malware dataset, and average precision of 0.98 and
recall of 0.96 with respect to manually verified ground-truth.Comment: Proceedings of the 20th International Symposium on Research in
Attacks, Intrusions and Defenses (RAID 2017
- …