819 research outputs found

    A Breezing Proof of the KMW Bound

    Full text link
    In their seminal paper from 2004, Kuhn, Moscibroda, and Wattenhofer (KMW) proved a hardness result for several fundamental graph problems in the LOCAL model: For any (randomized) algorithm, there are input graphs with nn nodes and maximum degree Δ\Delta on which Ω(min{logn/loglogn,logΔ/loglogΔ})\Omega(\min\{\sqrt{\log n/\log \log n},\log \Delta/\log \log \Delta\}) (expected) communication rounds are required to obtain polylogarithmic approximations to a minimum vertex cover, minimum dominating set, or maximum matching. Via reduction, this hardness extends to symmetry breaking tasks like finding maximal independent sets or maximal matchings. Today, more than 1515 years later, there is still no proof of this result that is easy on the reader. Setting out to change this, in this work, we provide a fully self-contained and simple\mathit{simple} proof of the KMW lower bound. The key argument is algorithmic, and it relies on an invariant that can be readily verified from the generation rules of the lower bound graphs.Comment: 21 pages, 6 figure

    AKLT Models with Quantum Spin Glass Ground States

    Full text link
    We study AKLT models on locally tree-like lattices of fixed connectivity and find that they exhibit a variety of ground states depending upon the spin, coordination and global (graph) topology. We find a) quantum paramagnetic or valence bond solid ground states, b) critical and ordered N\'eel states on bipartite infinite Cayley trees and c) critical and ordered quantum vector spin glass states on random graphs of fixed connectivity. We argue, in consonance with a previous analysis, that all phases are characterized by gaps to local excitations. The spin glass states we report arise from random long ranged loops which frustrate N\'eel ordering despite the lack of randomness in the coupling strengths.Comment: 10 pages, 1 figur

    On the existence of asymptotically good linear codes in minor-closed classes

    Full text link
    Let C=(C1,C2,)\mathcal{C} = (C_1, C_2, \ldots) be a sequence of codes such that each CiC_i is a linear [ni,ki,di][n_i,k_i,d_i]-code over some fixed finite field F\mathbb{F}, where nin_i is the length of the codewords, kik_i is the dimension, and did_i is the minimum distance. We say that C\mathcal{C} is asymptotically good if, for some ε>0\varepsilon > 0 and for all ii, niin_i \geq i, ki/niεk_i/n_i \geq \varepsilon, and di/niεd_i/n_i \geq \varepsilon. Sequences of asymptotically good codes exist. We prove that if C\mathcal{C} is a class of GF(pn)(p^n)-linear codes (where pp is prime and n1n \geq 1), closed under puncturing and shortening, and if C\mathcal{C} contains an asymptotically good sequence, then C\mathcal{C} must contain all GF(p)(p)-linear codes. Our proof relies on a powerful new result from matroid structure theory
    corecore