854,347 research outputs found
miR-375 gene dosage in pancreatic β-cells: implications for regulation of β-cell mass and biomarker development
MicroRNAs play a crucial role in the regulation of cell growth and differentiation. Mice with genetic deletion of miR-375 exhibit impaired glycemic control due to decreased β-cell and increased α-cell mass and function. The relative importance of these processes for the overall phenotype of miR-375KO mice is unknown. Here, we show that mice overexpressing miR-375 exhibit normal β-cell mass and function. Selective re-expression of miR-375 in β-cells of miR-375KO mice normalizes both, α- and β-cell phenotypes as well as glucose metabolism. Using this model, we also analyzed the contribution of β-cells to the total plasma miR-375 levels. Only a small proportion (≈1 %) of circulating miR-375 originates from β-cells. Furthermore, acute and profound β-cell destruction is sufficient to detect elevations of miR-375 levels in the blood. These findings are supported by higher miR-375 levels in the circulation of type 1 diabetes (T1D) subjects but not mature onset diabetes of the young (MODY) and type 2 diabetes (T2D) patients. Together, our data support an essential role for miR-375 in the maintenance of β-cell mass and provide in vivo evidence for release of miRNAs from pancreatic β-cells. The small contribution of β-cells to total plasma miR-375 levels make this miRNA an unlikely biomarker for β-cell function but suggests a utility for the detection of acute β-cell death for autoimmune diabetes
Efficient β-cell regeneration by a combination of neogenesis and replication following β-cell ablation and reversal of pancreatic duct ligation.
Achieving efficient β-cell regeneration is a major goal of diabetes research. Previously, we found that a combination of β-cell ablation and pancreatic duct ligation led to β-cell regeneration by direct conversion from α-cells. Here, we studied the effect of surgical reversal of the duct ligation, finding that there was a wave of β-cell replication following reversal. The combination of β-cell neogenesis prior to reversal of the duct ligation and β-cell replication following reversal resulted in efficient β-cell regeneration and eventual recovery of function. This provides an important proof of principle that efficient β-cell regeneration is possible, even from a starting point of profound β-cell ablation. This has important implications for efforts to promote β-cell regeneration
Calcium-sensing receptor activation increases cell-cell adhesion and ß-cell function
Background/Aims: The extracellular calcium-sensing receptor (CaR) is expressed in pancreatic β-cells where it is thought to facilitate cell-to-cell communication and augment insulin secretion. However, it is unknown how CaR activation improves β-cell function. Methods: Immunocytochemistry and western blotting confirmed the expression of CaR in MIN6 β-cell line. The calcimimetic R568 (1µM) was used to increase the affinity of the CaR and specifically activate the receptor at a physiologically appropriate extracellular calcium concentration. Incorporation of 5-bromo-2’-deoxyuridine (BrdU) was used to measure cell proliferation, whilst changes in non-nutrient-evoked cytosolic calcium were assessed using fura-2-microfluorimetry. AFM-single-cell-force spectroscopy related CaR-evoked changes in epithelial (E)-cadherin expression to improved functional tethering between coupled cells. Results: Activation of the CaR over 48hr doubled the expression of E-cadherin (206±41%) and increased L-type voltage-dependent calcium channel expression by 70% compared to control. These changes produced a 30% increase in cell-cell tethering and elevated the basal-to-peak amplitude of ATP (50µM) and tolbutamide (100µM)-evoked changes in cytosolic calcium. Activation of the receptor also increased PD98059 (1-100µM) and SU1498 (1-100µM)-dependent β-cell proliferation. Conclusion: Our data suggest that activation of the CaR increases E-cadherin mediated functional tethering between β-cells and increases expression of L-type VDCC and secretagogue-evoked changes in [Ca2+]i. These findings could explain how local changes in calcium, co-released with insulin, activate the CaR on neighbouring cells to help ensure efficient and appropriate secretory function
Nuclear factor κB-inducing kinase activation as a mechanism of pancreatic β cell failure in obesity
The nuclear factor κB (NF-κB) pathway is a master regulator of inflammatory processes and is implicated in insulin resistance and pancreatic β cell dysfunction in the metabolic syndrome. Whereas canonical NF-κB signaling is well studied, there is little information on the divergent noncanonical NF-κB pathway in the context of pancreatic islet dysfunction. Here, we demonstrate that pharmacological activation of the noncanonical NF-κB-inducing kinase (NIK) disrupts glucose homeostasis in zebrafish in vivo. We identify NIK as a critical negative regulator of β cell function, as pharmacological NIK activation results in impaired glucose-stimulated insulin secretion in mouse and human islets. NIK levels are elevated in pancreatic islets isolated from diet-induced obese (DIO) mice, which exhibit increased processing of noncanonical NF-κB components p100 to p52, and accumulation of RelB. TNF and receptor activator of NF-κB ligand (RANKL), two ligands associated with diabetes, induce NIK in islets. Mice with constitutive β cell-intrinsic NIK activation present impaired insulin secretion with DIO. NIK activation triggers the noncanonical NF-κB transcriptional network to induce genes identified in human type 2 diabetes genome-wide association studies linked to β cell failure. These studies reveal that NIK contributes a central mechanism for β cell failure in diet-induced obesity.</p
Wnt/β-catenin signaling stimulates the expression and synaptic clustering of the autism-associated Neuroligin 3 gene
Indexación: Scopus.Synaptic abnormalities have been described in individuals with autism spectrum disorders (ASD). The cell-adhesion molecule Neuroligin-3 (Nlgn3) has an essential role in the function and maturation of synapses and NLGN3 ASD-associated mutations disrupt hippocampal and cortical function. Here we show that Wnt/β-catenin signaling increases Nlgn3 mRNA and protein levels in HT22 mouse hippocampal cells and primary cultures of rat hippocampal neurons. We characterized the activity of mouse and rat Nlgn3 promoter constructs containing conserved putative T-cell factor/lymphoid enhancing factor (TCF/LEF)-binding elements (TBE) and found that their activity is significantly augmented in Wnt/β-catenin cell reporter assays. Chromatin immunoprecipitation (ChIP) assays and site-directed mutagenesis experiments revealed that endogenous β-catenin binds to novel TBE consensus sequences in the Nlgn3 promoter. Moreover, activation of the signaling cascade increased Nlgn3 clustering and co-localization with the scaffold PSD-95 protein in dendritic processes of primary neurons. Our results directly link Wnt/β-catenin signaling to the transcription of the Nlgn3 gene and support a functional role for the signaling pathway in the dysregulation of excitatory/inhibitory neuronal activity, as is observed in animal models of ASD.https://www.nature.com/articles/s41398-018-0093-y.pd
β-Catenin is a pH sensor with decreased stability at higher intracellular pH.
β-Catenin functions as an adherens junction protein for cell-cell adhesion and as a signaling protein. β-catenin function is dependent on its stability, which is regulated by protein-protein interactions that stabilize β-catenin or target it for proteasome-mediated degradation. In this study, we show that β-catenin stability is regulated by intracellular pH (pHi) dynamics, with decreased stability at higher pHi in both mammalian cells and Drosophila melanogaster β-Catenin degradation requires phosphorylation of N-terminal residues for recognition by the E3 ligase β-TrCP. While β-catenin phosphorylation was pH independent, higher pHi induced increased β-TrCP binding and decreased β-catenin stability. An evolutionarily conserved histidine in β-catenin (found in the β-TrCP DSGIHS destruction motif) is required for pH-dependent binding to β-TrCP. Expressing a cancer-associated H36R-β-catenin mutant in the Drosophila eye was sufficient to induce Wnt signaling and produced pronounced tumors not seen with other oncogenic β-catenin alleles. We identify pHi dynamics as a previously unrecognized regulator of β-catenin stability, functioning in coincidence with phosphorylation
A Versatile, Portable Intravital Microscopy Platform for Studying Beta-cell Biology In Vivo
The pancreatic islet is a complex micro-organ containing numerous cell types, including endocrine, immune, and endothelial cells. The communication of these systems is lost upon isolation of the islets, and therefore the pathogenesis of diabetes can only be fully understood by studying this organized, multicellular environment in vivo. We have developed several adaptable tools to create a versatile platform to interrogate β-cell function in vivo. Specifically, we developed β-cell-selective virally-encoded fluorescent protein biosensors that can be rapidly and easily introduced into any mouse. We then coupled the use of these biosensors with intravital microscopy, a powerful tool that can be used to collect cellular and subcellular data from living tissues. Together, these approaches allowed the observation of in vivo β-cell-specific ROS dynamics using the Grx1-roGFP2 biosensor and calcium signaling using the GcAMP6s biosensor. Next, we utilized abdominal imaging windows (AIW) to extend our in vivo observations beyond single-point terminal measurements to collect longitudinal physiological and biosensor data through repeated imaging of the same mice over time. This platform represents a significant advancement in our ability to study β-cell structure and signaling in vivo, and its portability for use in virtually any mouse model will enable meaningful studies of β-cell physiology in the endogenous islet niche
OR05-3 Mir-21 Contributes to Cytokine-Induced Beta Cell Dysfunction via Inhibition of mRNAs Regulating Beta Cell Identity
A hallmark of diabetes is the loss of physical or functional β cell mass. Alterations in β cell microRNA (miRNA) profiles have been described in diabetes. MiRNAs have also been shown to serve as important regulators of β cell development and function, implicating them in β cell dysfunction during diabetes development. Our lab has previously demonstrated that β cell microRNA 21 (miR-21) is increased in models of diabetes. However, a comprehensive analysis of the β cell effects of miR-21 remain poorly defined, and the effects of miR-21 on in vivo glucose homeostasis have never been explored. To this end, we performed a comprehensive in silico analysis of bioinformatics databases to identify potential β cell targets of miR-21, which yielded multiple targets in the Transforming Growth Factor Beta 2 (Tgfb2) and Fibroblast Growth Factor Receptor 3 (Fgfr3) pathways associated with regulation of differentiation. We hypothesize that β cell miR-21 plays a critical role in inhibiting β cell function and inducing loss of β cell identity. To validate targets in vitro, we developed a model whereby miR-21 is upregulated using a dose dependent lentiviral Tetracycline-on system in INS1 cells. Overexpression of miR-21 led to a reduction in expression levels of several members of the Tgfb2 and Fgfr3 pathways as well as multiple transcription factors associated with β cell function and identity, and an increase in aldehyde dehydrogenase transcripts, consistent with β cell dedifferentiation. To verify direct interactions between miR-21 and candidate target mRNAs, a biotin pulldown experiment was performed using a 3’ biotinylated mature miR-21 construct and a 3’ biotinylated cel-miR-67 control construct. Several mRNAs associated with β cell identity were enriched in the pulldown, indicating a direct interaction with miR-21. Lineage tracing was performed within an in vivo zebrafish model of β cell specific oxidative stress in which β cells expressed a nuclear GFP signal. Whole body knock down of miR-21 by morpholino microinjection showed a protective effect in stressed β cells and rescued against a dedifferentiated phenotype. To test the effect of miR-21 on glucose tolerance in vivo, inducible β cell specific knockout (βmiR-21KO) and overexpression (βmiR-21) mice were generated by crossing Ins1tm1(CreERT2)Thor mice with miR-21 floxed mice and miR-21-CAG-Z-EGFP mice, respectively. When compared to littermate controls, intraperitoneal glucose tolerance tests (IPGTT) exhibited hyperglycemia in βmiR-21 mice and euglycemia in βmiR-21KO mice. Metabolic studies, including glucose stimulated insulin secretion (GSIS) and insulin tolerance tests (ITT) are ongoing in our mouse models. Our results implicate miR-21 as a regulator of β cell dedifferentiation during diabetes development
Endothelial Wnt/β-catenin signaling inhibits glioma angiogenesis and normalizes tumor blood vessels by inducing PDGF-B expression
Endothelial Wnt/β-catenin signaling is necessary for angiogenesis of the central nervous system and blood–brain barrier (BBB) differentiation, but its relevance for glioma vascularization is unknown. In this study, we show that doxycycline-dependent Wnt1 expression in subcutaneous and intracranial mouse glioma models induced endothelial Wnt/β-catenin signaling and led to diminished tumor growth, reduced vascular density, and normalized vessels with increased mural cell attachment. These findings were corroborated in GL261 glioma cells intracranially transplanted in mice expressing dominant-active β-catenin specifically in the endothelium. Enforced endothelial β-catenin signaling restored BBB characteristics, whereas inhibition by Dkk1 (Dickkopf-1) had opposing effects. By overactivating the Wnt pathway, we induced the Wnt/β-catenin–Dll4/Notch signaling cascade in tumor endothelia, blocking an angiogenic and favoring a quiescent vascular phenotype, indicated by induction of stalk cell genes. We show that β-catenin transcriptional activity directly regulated endothelial expression of platelet-derived growth factor B (PDGF-B), leading to mural cell recruitment thereby contributing to vascular quiescence and barrier function. We propose that reinforced Wnt/β-catenin signaling leads to inhibition of angiogenesis with normalized and less permeable vessels, which might prove to be a valuable therapeutic target for antiangiogenic and edema glioma therapy
- …
