1,009 research outputs found

    A Hybrid Artificial Bee Colony Algorithm for Graph 3-Coloring

    Full text link
    The Artificial Bee Colony (ABC) is the name of an optimization algorithm that was inspired by the intelligent behavior of a honey bee swarm. It is widely recognized as a quick, reliable, and efficient methods for solving optimization problems. This paper proposes a hybrid ABC (HABC) algorithm for graph 3-coloring, which is a well-known discrete optimization problem. The results of HABC are compared with results of the well-known graph coloring algorithms of today, i.e. the Tabucol and Hybrid Evolutionary algorithm (HEA) and results of the traditional evolutionary algorithm with SAW method (EA-SAW). Extensive experimentations has shown that the HABC matched the competitive results of the best graph coloring algorithms, and did better than the traditional heuristics EA-SAW when solving equi-partite, flat, and random generated medium-sized graphs

    Extremal limit of the regular charged black holes in nonlinear electrodynamics

    Full text link
    The near horizon limit of the extreme nonlinear black hole is investigated. It is shown that resulting geometry belongs to the AdS2xS2 class with different modules of curvatures of subspaces and could be described in terms of the Lambert functions. It is demonstrated that the considered class of Lagrangians does not admit solutions of the Bertotti-Robinson type

    The Void Abundance with Non-Gaussian Primordial Perturbations

    Get PDF
    We use a Press-Schechter-like calculation to study how the abundance of voids changes in models with non-Gaussian initial conditions. While a positive skewness increases the cluster abundance, a negative skewness does the same for the void abundance. We determine the dependence of the void abundance on the non-Gaussianity parameter fnl for the local-model bispectrum-which approximates the bispectrum in some multi-field inflation models-and for the equilateral bispectrum, which approximates the bispectrum in e.g. string-inspired DBI models of inflation. We show that the void abundance in large-scale-structure surveys currently being considered should probe values as small as fnl < 10 and fnl^eq < 30, over distance scales ~10 Mpc.Comment: Submitted to JCA

    Optimising approximate entropy for assessing cardiac dyssynchrony with radionuclide ventriculography

    Get PDF
    Left ventricular dyssynchrony can be assessed with phase parameters from radionuclide ventriculography (RNVG), including approximate entropy (ApEn). The input values used to calculate ApEn will affect the results significantly, so it is essential to optimise ApEn for the application. However to date, no optimisation for ApEn applied to images has been published. In this paper, generated data were used to simulate patient phase images, allowing the input parameters for ApEn to be tested and optimised in a controlled environment. Clinical images were then used to confirm that the selected parameters were appropriate. The results demonstrate the effect of input parameters for ApEn and the most appropriate use with RNVG phase images. This work demonstrates the importance of optimisation and standardisation when using ApEn as a measure of dyssynchrony

    Radionuclide ventriculography phase analysis for risk stratification of patients undergoing cardiotoxic cancer therapy

    Get PDF
    Background: Accurate diagnostic tools to identify patients at risk of cancer therapy-related cardiac dysfunction (CTRCD) are critical. For patients undergoing cardiotoxic cancer therapy, ejection fraction assessment using radionuclide ventriculography (RNVG) is commonly used for serial assessment of left ventricular (LV) function. Methods: In this retrospective study, approximate entropy (ApEn), synchrony, entropy, and standard deviation from the phase histogram (phase SD) were investigated as potential early markers of LV dysfunction to predict CTRCD. These phase parameters were calculated from the baseline RNVG phase image for 177 breast cancer patients before commencing cardiotoxic therapy. Results: Of the 177 patients, 11 had a decline in left ventricular ejection fraction (LVEF) of over 10% to an LVEF below 50% after treatment had commenced. This patient group had a significantly higher ApEn at baseline to those who maintained a normal LVEF throughout treatment. Of the parameters investigated, ApEn was superior for predicting the risk of CTRCD. Combining ApEn with the baseline LVEF further improved the discrimination between the groups. Conclusions: The results suggest that RNVG phase analysis using approximate entropy may aid in the detection of sub-clinical LV contraction abnormalities, not detectable by baseline LVEF measurement, predicting a subsequent decline in LVEF

    Maximal Neutrino Mixing from a Minimal Flavor Symmetry

    Get PDF
    We study a number of models, based on a non-Abelian discrete group, that successfully reproduce the simple and predictive Yukawa textures usually associated with U(2) theories of flavor. These models allow for solutions to the solar and atmospheric neutrino problems that do not require altering successful predictions for the charged fermions or introducing sterile neutrinos. Although Yukawa matrices are hierarchical in the models we consider, the mixing between second- and third-generation neutrinos is naturally large. We first present a quantitative analysis of a minimal model proposed in earlier work, consisting of a global fit to fermion masses and mixing angles, including the most important renormalization group effects. We then propose two new variant models: The first reproduces all important features of the SU(5)xU(2) unified theory with neither SU(5) nor U(2). The second demonstrates that discrete subgroups of SU(2) can be used in constructing viable supersymmetric theories of flavor without scalar universality even though SU(2) by itself cannot.Comment: 34 pages LaTeX, 1 eps figure, minor revisions and references adde
    corecore