131,080 research outputs found

    Girvin-MacDonald-Platzman Collective Mode at General Filling Factors: Magneto-Roton Minimum at Half-Filled Landau Level

    Full text link
    The single mode approximation has proved useful for the excitation spectrum at ν=1/3\nu=1/3. We apply it to general fractions and find that it predicts nn magneto-roton minima in the dispersion of the Girvin-MacDonald-Platzman collective mode for the fractional quantum Hall states at ν=n/(2n+1)\nu=n/(2n+1), and one magneto-roton minimum for both the composite Fermi sea and the paired composite fermion state. Experimental relevance of the results will be considered.Comment: 5 pages, 6 figure

    Linear Phase Second Order Recursive Digital Integrators and Differentiators

    Get PDF
    In this paper, design of linear phase second order recursive digital integrators and differentiators is discussed. New second order integrators have been designed by using Genetic Algorithm (GA) optimization method. Thereafter, by modifying the transfer function of these integrators appropriately, new digital differentiators have been obtained. The proposed digital integrators and differentiators accurately approximate the ideal ones and have linear phase response over almost entire Nyquist frequency range. The proposed operators also outperform the existing operators in terms of both magnitude and phase response

    A Necessary and Sufficient Condition for Graph Matching to be equivalent to Clique Search

    Get PDF
    This paper formulates a necessary and sufficient condition for a generic graph matching problem to be equivalent to the maximum vertex and edge weight clique problem in a derived association graph. The consequences of this results are threefold: first, the condition is general enough to cover a broad range of practical graph matching problems; second, a proof to establish equivalence between graph matching and clique search reduces to showing that a given graph matching problem satisfies the proposed condition;\ud and third, the result sets the scene for generic continuous solutions for a broad range of graph matching problems. To illustrate the mathematical framework, we apply it to a number of graph matching problems, including the problem of determining the graph edit distance