227 research outputs found
Constrained Superfields and Standard Realization of Nonlinear Supersymmetry
A constrained superfield formalism has been proposed recently to analyze the
low energy physics related to Goldstinos. We prove that this formalism can be
reformulated in the language of standard realization of nonlinear
supersymmetry. New relations have been uncovered in the standard realization of
nonlinear supersymmetry.Comment: 8+1 pages, Latex, expanded discussions on scalar and vector field
Nonlinear Realization of Spontaneously Broken N=1 Supersymmetry Revisited
This paper revisits the nonlinear realization of spontaneously broken N=1
supersymmetry. It is shown that the constrained superfield formalism can be
reinterpreted in the language of standard realization of nonlinear
supersymmetry via a new and simpler route. Explicit formulas of actions are
presented for general renormalizable theories with or without gauge
interactions. The nonlinear Wess-Zumino gauge is discussed and relations are
pointed out for different definitions of gauge fields. In addition, a general
procedure is provided to deal with theories of arbitrary Kahler potentials.Comment: 1+18 pages, LaTe
Goldstino superfields for spontaneously broken N=2 supersymmetry
We examine spontaneously broken N=2 supersymmetry in four dimensions and
associate a spinor superfield with each Goldstino via a finite supersymmetry
transformation with parameters that are the Grassmann coordinates of N=2
superspace. Making use of a special choice of coset parametrization allows us
to develop a version of nonlinearly realized N=2 supersymmetry for which the
associated Goldstino superfields are defined on harmonic superspace, thereby
providing a natural mechanism for construction of a Goldstino action. The
corresponding superfield Lagrangian is an O(4) multiplet. This property is used
to reformulate the Goldstino action in projective superspace and in
conventional N=2 superspace. We show how to generate matter couplings of the
Goldstinos to supersymmetric matter using the N=2 harmonic, projective and full
superspaces. As a bi-product of our consideration, we also derive an N=2 chiral
Goldstino action.Comment: 20 pages, typos corrected, comments adde
A Bound on the Superpotential
We prove a general bound on the superpotential in theories with broken
supersymmetry and broken R-symmetry, 2|W|< f_a F, where f_a and F are the
R-axion and Goldstino decay constants, respectively. The bound holds for weakly
coupled as well as strongly coupled theories, thereby providing an exact result
in theories with broken supersymmetry. We briefly discuss several possible
applications.Comment: 20 page
Evidence for the classical integrability of the complete AdS(4) x CP(3) superstring
We construct a zero-curvature Lax connection in a sub-sector of the
superstring theory on AdS(4) x CP(3) which is not described by the
OSp(6|4)/U(3) x SO(1,3) supercoset sigma-model. In this sub-sector worldsheet
fermions associated to eight broken supersymmetries of the type IIA background
are physical fields. As such, the prescription for the construction of the Lax
connection based on the Z_4-automorphism of the isometry superalgebra OSp(6|4)
does not do the job. So, to construct the Lax connection we have used an
alternative method which nevertheless relies on the isometry of the target
superspace and kappa-symmetry of the Green-Schwarz superstring.Comment: 1+26 pages; v2: minor typos corrected, acknowledgements adde
Generalized N = 2 Super Landau Models
We generalize previous results for the superplane Landau model to exhibit an
explicit worldline N = 2 supersymmetry for an arbitrary magnetic field on any
two-dimensional manifold. Starting from an off-shell N = 2 superfield
formalism, we discuss the quantization procedure in the general case
characterized by two independent potentials on the manifold and show that the
relevant Hamiltonians are factorizable. In the restricted case when both the
Gauss curvature and the magnetic field are constant over the manifold and, as a
consequence, the underlying potentials are related, the Hamiltonians admit
infinite series of factorization chains implying the integrability of the
associated systems. We explicitly determine the spectrum and eigenvectors for
the particular model with CP^1 as the bosonic manifold.Comment: 26 page
Supermembrane interaction with dynamical D=4 N=1 supergravity. Superfield Lagrangian description and spacetime equations of motion
We obtain the complete set of equations of motion for the interacting system
of supermembrane and dynamical D=4 N = 1 supergravity by varying its complete
superfield action and writing the resulting superfield equations in the special
gauge where the supermembrane Goldstone field is set to zero. We solve the
equations for auxiliary fields and discuss the effect of dynamical generation
of cosmological constant in the Einstein equation of interacting system and its
renormalization due to some regular contributions from supermembrane. These two
effects (discussed in late 70th and 80th, in the bosonic perspective and in the
supergravity literature) result in that, generically, the cosmological constant
has different values in the branches of the spacetime separated by the
supermembrane worldvolume.Comment: 23 pages, no figures. V2 two references added, 24 page
Felix Alexandrovich Berezin and his work
This is a survey of Berezin's work focused on three topics: representation
theory, general concept of quantization, and supermathematics.Comment: LaTeX, 27 page
Search for Axionlike and Scalar Particles with the NA64 Experiment
We carried out a model-independent search for light scalar (s) and
pseudoscalar axionlike (a) particles that couple to two photons by using the
high-energy CERN SPS H4 electron beam. The new particles, if they exist, could
be produced through the Primakoff effect in interactions of hard bremsstrahlung
photons generated by 100 GeV electrons in the NA64 active dump with virtual
photons provided by the nuclei of the dump. The a(s) would penetrate the
downstream HCAL module, serving as shielding, and would be observed either
through their decay in the rest of the HCAL detector or
as events with large missing energy if the a(s) decays downstream of the HCAL.
This method allows for the probing the a(s) parameter space, including those
from generic axion models, inaccessible to previous experiments. No evidence of
such processes has been found from the analysis of the data corresponding to
electrons on target allowing to set new limits on the
-coupling strength for a(s) masses below 55 MeV.Comment: This publication is dedicated to the memory of our colleague Danila
Tlisov. 7 pages, 5 figures, revised version accepted for publication in Phys.
Rev. Let
Effective String Theory Revisited
We revisit the effective field theory of long relativistic strings such as
confining flux tubes in QCD. We derive the Polchinski-Strominger interaction by
a calculation in static gauge. This interaction implies that a non-critical
string which initially oscillates in one direction gets excited in orthogonal
directions as well. In static gauge no additional term in the effective action
is needed to obtain this effect. It results from a one-loop calculation using
the Nambu-Goto action. Non-linearly realized Lorentz symmetry is manifest at
all stages in dimensional regularization. We also explain that independent of
the number of dimensions non-covariant counterterms have to be added to the
action in the commonly used zeta-function regularization.Comment: 21 pages, 4 figures, v2: typo corrected, references added, published
versio
- …