47,359 research outputs found

    DIRBE Minus 2MASS: Confirming the CIRB in 40 New Regions at 2.2 and 3.5 Microns

    Full text link
    With the release of the 2MASS All-Sky Point Source Catalog, stellar fluxes from 2MASS are used to remove the contribution due to Galactic stars from the intensity measured by DIRBE in 40 new regions in the North and South Galactic polar caps. After subtracting the interplanetary and Galactic foregrounds, a consistent residual intensity of 14.69 +/- 4.49 kJy/sr at 2.2 microns is found. Allowing for a constant calibration factor between the DIRBE 3.5 microns and the 2MASS 2.2 microns fluxes, a similar analysis leaves a residual intensity of 15.62 +/- 3.34 kJy/sr at 3.5 microns. The intercepts of the DIRBE minus 2MASS correlation at 1.25 microns show more scatter and are a smaller fraction of the foreground, leading to a still weak limit on the CIRB of 8.88 +/- 6.26 kJy/sr (1 sigma).Comment: 25 pages LaTeX, 10 figures, 5 tables; Version accepted by the ApJ. Includes minor changes to the text including further discussion of zodiacal light issues and the allowance for variable stars in computing uncertainties in the stellar contribution to the DIRBE intensitie

    Approximate Coulomb distortion effects in (e,e'p) reactions

    Full text link
    In this paper we apply a well-tested approximation of electron Coulomb distortion effects to the exclusive reaction (e,e'p) in the quasielastic region. We compare the approximate treatment of Coulomb distortion effects to the exact distorted wave Born approximation evaluated by means of partial wave analysis to gauge the quality of our approximate treatment. We show that the approximate M\"oller potential has a plane-wave-like structure and hence permits the separation of the cross section into five terms which depend on bilinear products of transforms of the transition four current elements. These transforms reduce to Fourier transforms when Coulomb distortion is not present, but become modified with the inclusion of Coulomb distortion. We investigate the application of the approximate formalism to a model of 208Pb(e,e'p) using Dirac-Hartree single particle wave functions for the ground state and relativistic optical model wave functions for the continuum proton. We show that it is still possible to extract, albeit with some approximation, the various structure functions from the experimentally measured data even for heavy nuclei.Comment: 32 pages, 11 figures, 19 reference
    • …